論文の概要: Generative transformations and patterns in LLM-native approaches for software verification and falsification
- arxiv url: http://arxiv.org/abs/2404.09384v3
- Date: Mon, 06 Oct 2025 21:35:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-08 17:57:07.776965
- Title: Generative transformations and patterns in LLM-native approaches for software verification and falsification
- Title(参考訳): ソフトウェア検証とファルシフィケーションのためのLLMネイティブアプローチにおける生成的変換とパターン
- Authors: Víctor A. Braberman, Flavia Bonomo-Braberman, Yiannis Charalambous, Juan G. Colonna, Lucas C. Cordeiro, Rosiane de Freitas,
- Abstract要約: より規律のあるエンジニアリングプラクティスに向けた基本的なステップは、コア機能単位生成変換の体系的な理解である、と我々は主張する。
まず、素早い相互作用を概念的シグネチャに抽象化する、生成変換のきめ細かい分類法を提案する。
我々の分析は分類学の有用性を検証するだけでなく、戦略的ギャップや相互関係も明らかにする。
- 参考スコア(独自算出の注目度): 1.4595796095047369
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of prompting as the dominant paradigm for leveraging Large Language Models (LLMs) has led to a proliferation of LLM-native software, where application behavior arises from complex, stochastic data transformations. However, the engineering of such systems remains largely exploratory and ad-hoc, hampered by the absence of conceptual frameworks, ex-ante methodologies, design guidelines, and specialized benchmarks. We argue that a foundational step towards a more disciplined engineering practice is a systematic understanding of the core functional units--generative transformations--and their compositional patterns within LLM-native applications. Focusing on the rich domain of software verification and falsification, we conduct a secondary study of over 100 research proposals to address this gap. We first present a fine-grained taxonomy of generative transformations, abstracting prompt-based interactions into conceptual signatures. This taxonomy serves as a scaffolding to identify recurrent transformation relationship patterns--analogous to software design patterns--that characterize solution approaches in the literature. Our analysis not only validates the utility of the taxonomy but also surfaces strategic gaps and cross-dimensional relationships, offering a structured foundation for future research in modular and compositional LLM application design, benchmarking, and the development of reliable LLM-native systems.
- Abstract(参考訳): 大規模言語モデル(LLM)を活用する主要なパラダイムとしてのプロンプトの出現は、複雑で確率的なデータ変換からアプリケーションの振る舞いが生じるLLMネイティブソフトウェアの普及につながっている。
しかし、そのようなシステムのエンジニアリングは、主に探索的かつアドホックなものであり、概念的なフレームワーク、元アンティー方法論、設計ガイドライン、特別なベンチマークが欠如しているため妨げられている。
我々は、より規律のあるエンジニアリングプラクティスに向けた基本的なステップは、コア機能ユニット(生成的変換)と、LLMネイティブアプリケーションにおけるそれらの構成パターンの体系的な理解である、と論じる。
ソフトウェア検証とファルシフィケーションの豊富な領域に注目して、このギャップに対処するための100以上の研究提案を二次的に調査する。
まず、素早い相互作用を概念的シグネチャに抽象化する、生成変換のきめ細かい分類法を提案する。
この分類法は、再帰的なトランスフォーメーション関係のパターンを識別するための足場として機能する。
我々の分析は,分類学の有用性を検証するだけでなく,戦略的ギャップや相互関係を表面化し,モジュール型および構成型LLMアプリケーション設計,ベンチマーク,信頼性の高いLLMネイティブシステム開発における将来的な研究の基盤となる。
関連論文リスト
- A Systematic Literature Review on Detecting Software Vulnerabilities with Large Language Models [2.518519330408713]
ソフトウェア工学における大規模言語モデル(LLM)は、ソフトウェア脆弱性検出への関心を喚起している。
この分野の急速な発展は、断片化された研究の風景を生み出した。
この断片化は、最先端技術の明確な概要を得るのを困難にし、研究を有意義に比較し分類する。
論文 参考訳(メタデータ) (2025-07-30T13:17:16Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
推論(Reasoning)は、論理的推論、問題解決、意思決定を可能にする基本的な認知プロセスである。
大規模言語モデル(LLM)の急速な進歩により、推論は高度なAIシステムを区別する重要な能力として浮上した。
我々は,(1)推論が達成される段階を定義するレジーム,(2)推論プロセスに関与するコンポーネントを決定するアーキテクチャの2つの側面に沿って既存の手法を分類する。
論文 参考訳(メタデータ) (2025-04-12T01:27:49Z) - Aligning Multimodal LLM with Human Preference: A Survey [62.89722942008262]
大規模言語モデル(LLM)は、タスク固有のトレーニングを必要とせずに、単純なプロンプトで幅広い汎用タスクを処理できる。
MLLM(Multimodal Large Language Models)は、視覚的、聴覚的、テキスト的データを含む複雑なタスクに対処する大きな可能性を実証している。
しかし、真理性、安全性、o1のような推論、および人間の嗜好との整合性に関する重要な問題は未解決のままである。
論文 参考訳(メタデータ) (2025-03-18T17:59:56Z) - Challenges in Testing Large Language Model Based Software: A Faceted Taxonomy [14.041979999979166]
LLM(Large Language Models)とMulti-Agent LLM(MALLMs)は、従来の機械学習ソフトウェアとは異なり、非決定性を導入している。
本稿では, LLMテストケース設計の分類について, 研究文献, 経験, 実践状況を表すオープンソースツールの両面から報告する。
論文 参考訳(メタデータ) (2025-03-01T13:15:56Z) - LLMs in Software Security: A Survey of Vulnerability Detection Techniques and Insights [12.424610893030353]
大規模言語モデル(LLM)は、ソフトウェア脆弱性検出のためのトランスフォーメーションツールとして登場している。
本稿では,脆弱性検出におけるLSMの詳細な調査を行う。
言語間の脆弱性検出、マルチモーダルデータ統合、リポジトリレベルの分析といった課題に対処する。
論文 参考訳(メタデータ) (2025-02-10T21:33:38Z) - Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
大規模言語モデル(LLM)は、テキスト生成の大幅な進歩をもたらしたが、分類タスクの強化の可能性はまだ未検討である。
生成と符号化の両方のアプローチを含む分類のための微調整LDMを徹底的に研究するためのフレームワークを提案する。
我々はこのフレームワークを編集意図分類(EIC)においてインスタンス化する。
論文 参考訳(メタデータ) (2024-10-02T20:48:28Z) - Large Language Models for Anomaly and Out-of-Distribution Detection: A Survey [18.570066068280212]
大規模言語モデル(LLM)は、自然言語処理だけでなく、より広範なアプリケーションでもその効果を実証している。
本調査は,LSMの文脈下での異常検出とOOD検出の問題点に焦点を当てた。
LLMが果たす役割に基づいて,既存のアプローチを2つのクラスに分類する新たな分類法を提案する。
論文 参考訳(メタデータ) (2024-09-03T15:22:41Z) - A Software Engineering Perspective on Testing Large Language Models: Research, Practice, Tools and Benchmarks [2.8061460833143346]
大規模言語モデル(LLM)は、スタンドアロンツールとしても、現在および将来のソフトウェアシステムのコンポーネントとしても、急速に普及しています。
LLMを2030年のハイテイクシステムや安全クリティカルシステムで使用するためには、厳格なテストを実施する必要がある。
論文 参考訳(メタデータ) (2024-06-12T13:45:45Z) - Large Language Models Offer an Alternative to the Traditional Approach of Topic Modelling [0.9095496510579351]
広範テキストコーパス内の話題を明らかにする代替手段として,大規模言語モデル (LLM) の未解決の可能性について検討する。
本研究は, 適切なプロンプトを持つLCMが, トピックのタイトルを生成でき, トピックを洗練, マージするためのガイドラインに固執する上で, 有効な代替手段として目立たせることを示唆している。
論文 参考訳(メタデータ) (2024-03-24T17:39:51Z) - A Systematic Survey of Prompt Engineering in Large Language Models:
Techniques and Applications [11.568575664316143]
本稿では,応用分野別に分類した,最近のプロンプト工学の進歩について概説する。
本稿では、プロンプト手法、その応用、関連するモデル、利用したデータセットについて詳述する。
この体系的な分析は、この急速に発展している分野をよりよく理解し、オープンな課題と迅速なエンジニアリングの機会を照明することによって将来の研究を促進する。
論文 参考訳(メタデータ) (2024-02-05T19:49:13Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
本稿では,これらの課題に対処するために,13Bパラメータを持つ生成判断器Auto-Jを提案する。
我々のモデルは,大規模な実環境シナリオ下でのユーザクエリとLLM生成応答に基づいて訓練されている。
実験的に、Auto-Jはオープンソースモデルとクローズドソースモデルの両方を含む、強力なライバルのシリーズを上回っている。
論文 参考訳(メタデータ) (2023-10-09T07:27:15Z) - FreshLLMs: Refreshing Large Language Models with Search Engine
Augmentation [92.43001160060376]
本研究では,現在の世界知識をテストする質問に答える文脈において,大規模言語モデル(LLM)の事実性について検討する。
多様な質問や回答のタイプを含む新しい動的QAベンチマークであるFreshQAを紹介する。
我々は,2モード評価法により,閉じたLLMとオープンソースのLLMの多種多様な配列をベンチマークし,その正しさと幻覚の両面を計測する。
これらの結果に触発されたFreshPromptは、FreshQA上でのLLMの性能を大幅に向上させる単純な数ショットプロンプトである。
論文 参考訳(メタデータ) (2023-10-05T00:04:12Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Recent Advances in Direct Speech-to-text Translation [58.692782919570845]
我々は、既存の研究成果を、モデリングの負担、データの不足、アプリケーション問題という3つの課題に基づいて分類する。
データ不足の課題に対して、最近の研究は、データ強化、事前学習、知識蒸留、多言語モデリングなど、多くの高度な技術を活用している。
我々は、リアルタイム、セグメンテーション、名前付きエンティティ、性別バイアス、コードスイッチングなど、アプリケーションの問題を分析して要約する。
論文 参考訳(メタデータ) (2023-06-20T16:14:27Z) - LASP: Text-to-Text Optimization for Language-Aware Soft Prompting of
Vision & Language Models [67.19124099815645]
ベースクラスオーバーフィットを軽減するために,Language-Aware Soft Prompting (LASP) 学習手法を提案する。
LASPは本質的に、トレーニング中に仮想クラス、すなわちビジュアルサンプルが使用できないクラス名を含むことができる。
LASPは、手作りのプロンプトとCLIPによる11のテストデータセットのうち8つの新しいクラスの精度が初めて一致し、上回っている。
論文 参考訳(メタデータ) (2022-10-03T17:56:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。