論文の概要: Masked and Shuffled Blind Spot Denoising for Real-World Images
- arxiv url: http://arxiv.org/abs/2404.09389v1
- Date: Mon, 15 Apr 2024 00:19:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 14:09:06.916890
- Title: Masked and Shuffled Blind Spot Denoising for Real-World Images
- Title(参考訳): リアルワールド画像のためのマズード・シャッフル・ブラインドスポット
- Authors: Hamadi Chihaoui, Paolo Favaro,
- Abstract要約: ブラインドスポットデノナイズ原理に基づく単一画像デノナイズに対する新しいアプローチを提案する。
MASHは、入力の盲目(マスキング)レベルと(未知)雑音相関の関係を決定するための注意深い分析の結果である。
我々は,実世界の雑音画像データセットに関する広範な実験を通してMASHを評価する。
- 参考スコア(独自算出の注目度): 19.263005158979567
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel approach to single image denoising based on the Blind Spot Denoising principle, which we call MAsked and SHuffled Blind Spot Denoising (MASH). We focus on the case of correlated noise, which often plagues real images. MASH is the result of a careful analysis to determine the relationships between the level of blindness (masking) of the input and the (unknown) noise correlation. Moreover, we introduce a shuffling technique to weaken the local correlation of noise, which in turn yields an additional denoising performance improvement. We evaluate MASH via extensive experiments on real-world noisy image datasets. We demonstrate on par or better results compared to existing self-supervised denoising methods.
- Abstract(参考訳): そこで我々は,masked and SHuffled Blind Spot Denoising (MASH) と呼ぶ,ブラインド・スポット・デノナイジング原理に基づく単一画像デノナイジングの新しいアプローチを提案する。
我々は、実画像に悩まされる相関ノイズの場合に焦点を当てる。
MASHは、入力の盲目(マスキング)レベルと(未知)雑音相関の関係を決定するための注意深い分析の結果である。
さらに、雑音の局所的相関を弱めるシャッフル手法を導入し、それによってさらなるデノイング性能の向上をもたらす。
我々は,実世界の雑音画像データセットに関する広範な実験を通してMASHを評価する。
従来の自己監督型聴解法と比較して, 同等かそれ以上の結果が得られた。
関連論文リスト
- Exploring Efficient Asymmetric Blind-Spots for Self-Supervised Denoising in Real-World Scenarios [44.31657750561106]
実世界のシナリオにおけるノイズはしばしば空間的に相関しており、多くの自己教師型アルゴリズムは性能が良くない。
盲点サイズを自由に調整できる非対称可変ブラインド・スポットネットワーク(AT-BSN)を提案する。
提案手法は最先端技術を実現し,計算オーバーヘッドや視覚効果の観点から,他の自己教師付きアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-03-29T15:19:01Z) - Masked Image Training for Generalizable Deep Image Denoising [53.03126421917465]
本稿では,デノナイジングネットワークの一般化性能を高めるための新しい手法を提案する。
提案手法では,入力画像のランダムなピクセルをマスキングし,学習中に欠落した情報を再構成する。
提案手法は,他のディープラーニングモデルよりも優れた一般化能力を示し,実世界のシナリオに直接適用可能である。
論文 参考訳(メタデータ) (2023-03-23T09:33:44Z) - I2V: Towards Texture-Aware Self-Supervised Blind Denoising using
Self-Residual Learning for Real-World Images [8.763680382529412]
pixel-shuffle downsampling (PD) はノイズの空間的相関を排除するために提案されている。
テクスチャ情報を維持するために,PD処理を使わずに自己学習を提案する。
広汎な実験の結果,提案手法は最先端の自己監督型ブラインド・デノイング・アプローチよりも優れていた。
論文 参考訳(メタデータ) (2023-02-21T08:51:17Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
暗黙的ニューラル表現(INR)のアーキテクチャ的帰納的バイアスを利用した代替的認知戦略を提案する。
提案手法は,低雑音シナリオや実雑音シナリオの広い範囲において,既存のゼロショット復調手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-05T12:46:36Z) - FINO: Flow-based Joint Image and Noise Model [23.9749061109964]
フローベースジョイントイメージとノイズモデル(FINO)
本研究では,フローベース・ジョイント・イメージ・アンド・ノイズモデル(FINO)を提案する。
論文 参考訳(メタデータ) (2021-11-11T02:51:54Z) - Enhancing and Learning Denoiser without Clean Reference [23.11994688706024]
本稿では,ノイズ伝達タスクの特別事例として,ノイズ低減タスクに関する新しいディープイメージデノベーション手法を提案する。
実世界のデノナイジングベンチマークの結果から,提案手法は現実的な雑音を除去する上で有望な性能を実現することを示す。
論文 参考訳(メタデータ) (2020-09-09T13:15:31Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
本稿では,自己指導型学習と知識蒸留を取り入れた2段階の手法を提案する。
自己教師型学習では,実雑音の画像のみから視覚を学習するための拡張型盲点ネットワーク(D-BSN)を提案する。
実験の結果,本手法は合成ノイズ画像と実世界のノイズ画像の両方で良好に機能することがわかった。
論文 参考訳(メタデータ) (2020-08-31T16:22:40Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
自己監督型認知の質を向上させる新しい方法を提案する。
我々は、クリーンな画像がポイントスプレッド関数(PSF)との畳み込みの結果であり、ニューラルネットワークの最後にこの操作を明示的に含んでいると仮定する。
論文 参考訳(メタデータ) (2020-08-19T13:06:24Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
実世界の画像ノイズ除去は、コンピュータビジョンにおける長年の課題である。
本稿では,ノイズ除去およびノイズ発生タスクに対処する新しい統合フレームワークを提案する。
本手法はクリーンノイズ画像対の連成分布を学習する。
論文 参考訳(メタデータ) (2020-07-12T09:16:06Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
ブラインド画像のデノイングはコンピュータビジョンにおいて重要な問題であるが、非常に難しい問題である。
本稿では,ノイズ推定と画像デノーミングを併用した新しい変分推論手法を提案する。
論文 参考訳(メタデータ) (2019-08-29T15:54:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。