An Autoencoder-Based Constellation Design for AirComp in Wireless Federated Learning
- URL: http://arxiv.org/abs/2404.09392v1
- Date: Mon, 15 Apr 2024 00:25:12 GMT
- Title: An Autoencoder-Based Constellation Design for AirComp in Wireless Federated Learning
- Authors: Yujia Mu, Xizixiang Wei, Cong Shen,
- Abstract summary: We propose an end-to-end communication system supporting AirComp with digital modulation.
We leverage autoencoder network structures and explore the joint optimization of transmitter and receiver components.
- Score: 8.255037356276341
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wireless federated learning (FL) relies on efficient uplink communications to aggregate model updates across distributed edge devices. Over-the-air computation (a.k.a. AirComp) has emerged as a promising approach for addressing the scalability challenge of FL over wireless links with limited communication resources. Unlike conventional methods, AirComp allows multiple edge devices to transmit uplink signals simultaneously, enabling the parameter server to directly decode the average global model. However, existing AirComp solutions are intrinsically analog, while modern wireless systems predominantly adopt digital modulations. Consequently, careful constellation designs are necessary to accurately decode the sum model updates without ambiguity. In this paper, we propose an end-to-end communication system supporting AirComp with digital modulation, aiming to overcome the challenges associated with accurate decoding of the sum signal with constellation designs. We leverage autoencoder network structures and explore the joint optimization of transmitter and receiver components. Our approach fills an important gap in the context of accurately decoding the sum signal in digital modulation-based AirComp, which can advance the deployment of FL in contemporary wireless systems.
Related papers
- Communication-Control Codesign for Large-Scale Wireless Networked Control Systems [80.30532872347668]
Wireless Networked Control Systems (WNCSs) are essential to Industry 4.0, enabling flexible control in applications, such as drone swarms and autonomous robots.
We propose a practical WNCS model that captures correlated dynamics among multiple control loops with spatially distributed sensors and actuators sharing limited wireless resources over multi-state Markov block-fading channels.
We develop a Deep Reinforcement Learning (DRL) algorithm that efficiently handles the hybrid action space, captures communication-control correlations, and ensures robust training despite sparse cross-domain variables and floating control inputs.
arXiv Detail & Related papers (2024-10-15T06:28:21Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
A digital twin (DT) leverages a virtual representation of the physical world, along with communication (e.g., 6G), computing, and artificial intelligence (AI) technologies to enable many connected intelligence services.
Wireless systems can exploit the paradigm of semantic communication (SC) for facilitating informed decision-making under strict communication constraints.
A novel framework called causal semantic communication (CSC) is proposed for DT-based wireless systems.
arXiv Detail & Related papers (2023-04-25T00:15:00Z) - Digital Over-the-Air Federated Learning in Multi-Antenna Systems [30.137208705209627]
We study the performance optimization of federated learning (FL) over a realistic wireless communication system with digital modulation and over-the-air computation (AirComp)
We propose a modified federated averaging (FedAvg) algorithm that combines digital modulation with AirComp to mitigate wireless fading while ensuring the communication efficiency.
An artificial neural network (ANN) is used to estimate the local FL models of all devices and adjust the beamforming matrices at the PS for future model transmission.
arXiv Detail & Related papers (2023-02-04T07:26:06Z) - Over-the-Air Federated Learning with Retransmissions (Extended Version) [21.37147806100865]
We study the impact of estimation errors on the convergence of Federated Learning (FL) over resource-constrained wireless networks.
We propose retransmissions as a method to improve FL convergence over resource-constrained wireless networks.
arXiv Detail & Related papers (2021-11-19T15:17:15Z) - Relay-Assisted Cooperative Federated Learning [10.05493937334448]
Over-the-air computation allows mobile devices to concurrently upload their local models.
Due to wireless channel fading, the model aggregation error at the edge server is dominated by the weakest channel among all devices.
In this paper, we propose a relay-assisted cooperative FL scheme to effectively address the straggler issue.
arXiv Detail & Related papers (2021-07-20T14:06:19Z) - Over-the-Air Decentralized Federated Learning [28.593149477080605]
We consider decentralized federated learning (FL) over wireless networks, where over-the-air computation (AirComp) is adopted to facilitate the local model consensus in a device-to-device (D2D) communication manner.
We propose an AirComp-based DSGD with gradient tracking and variance reduction (DSGT-VR) algorithm, where both precoding and decoding strategies are developed for D2D communication.
We prove that the proposed algorithm converges linearly and establish the optimality gap for strongly convex and smooth loss functions, taking into account the channel fading and noise.
arXiv Detail & Related papers (2021-06-15T09:42:33Z) - Edge Federated Learning Via Unit-Modulus Over-The-Air Computation
(Extended Version) [64.76619508293966]
This paper proposes a unit-modulus over-the-air computation (UM-AirComp) framework to facilitate efficient edge federated learning.
It uploads simultaneously local model parameters and updates global model parameters via analog beamforming.
We demonstrate the implementation of UM-AirComp in a vehicle-to-everything autonomous driving simulation platform.
arXiv Detail & Related papers (2021-01-28T15:10:22Z) - Convergence of Federated Learning over a Noisy Downlink [84.55126371346452]
We study federated learning, where power-limited wireless devices utilize their local datasets to collaboratively train a global model with the help of a remote parameter server.
This framework requires downlink transmission from the PS to the devices and uplink transmission from the devices to the PS.
The goal of this study is to investigate the impact of the bandwidth-limited shared wireless medium in both the downlink and uplink on the performance of FL.
arXiv Detail & Related papers (2020-08-25T16:15:05Z) - Cluster-Based Cooperative Digital Over-the-Air Aggregation for Wireless
Federated Edge Learning [9.179817518536545]
We study a federated learning system at the wireless edge that uses over-the-air computation (AirComp)
In such a system, users transmit their messages over a multi-access channel concurrently to achieve fast model aggregation.
We propose an improved digital AirComp scheme to relax its requirements on the transmitters, where users perform phase correction and transmit with full power.
arXiv Detail & Related papers (2020-08-03T16:29:52Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.