論文の概要: Human-in-the-Loop Segmentation of Multi-species Coral Imagery
- arxiv url: http://arxiv.org/abs/2404.09406v3
- Date: Tue, 12 Nov 2024 04:37:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:17:48.478411
- Title: Human-in-the-Loop Segmentation of Multi-species Coral Imagery
- Title(参考訳): 多種サンゴのヒト・イン・ザ・ループセグメンテーション
- Authors: Scarlett Raine, Ross Marchant, Brano Kusy, Frederic Maire, Niko Suenderhauf, Tobias Fischer,
- Abstract要約: ポイントラベルの伝搬は、スパースポイントでラベル付けされた既存の画像を使用して、強化された地上真実データを生成する技術である。
大規模基盤モデルの最近の進歩により, 強化された地中真実マスクの作成が促進されていることを示す。
本稿では,アノテーションの効率を大幅に向上させる,Human-in-the-loop原則に基づくラベリング手法を提案する。
- 参考スコア(独自算出の注目度): 3.3564744382205127
- License:
- Abstract: Marine surveys by robotic underwater and surface vehicles result in substantial quantities of coral reef imagery, however labeling these images is expensive and time-consuming for domain experts. Point label propagation is a technique that uses existing images labeled with sparse points to create augmented ground truth data, which can be used to train a semantic segmentation model. In this work, we show that recent advances in large foundation models facilitate the creation of augmented ground truth masks using only features extracted by the denoised version of the DINOv2 foundation model and K-Nearest Neighbors (KNN), without any pre-training. For images with extremely sparse labels, we present a labeling method based on human-in-the-loop principles, which greatly enhances annotation efficiency: in the case that there are 5 point labels per image, our human-in-the-loop method outperforms the prior state-of-the-art by 14.2% for pixel accuracy and 19.7% for mIoU; and by 8.9% and 18.3% if there are 10 point labels. When human-in-the-loop labeling is not available, using the denoised DINOv2 features with a KNN still improves on the prior state-of-the-art by 2.7% for pixel accuracy and 5.8% for mIoU (5 grid points). On the semantic segmentation task, we outperform the prior state-of-the-art by 8.8% for pixel accuracy and by 13.5% for mIoU when only 5 point labels are used for point label propagation. Additionally, we perform a comprehensive study into the impacts of the point label placement style and the number of points on the point label propagation quality, and make several recommendations for improving the efficiency of labeling images with points.
- Abstract(参考訳): 水中と表面の車両による海洋調査は、大量のサンゴ礁の画像をもたらすが、これらの画像にラベルをつけるのは、ドメインの専門家にとって高価で時間を要する。
ポイントラベルの伝搬は、スパースポイントでラベル付けされた既存のイメージを使用して、セマンティックセグメンテーションモデルのトレーニングに使用できる強化された地上真実データを生成する技術である。
本研究では,DINOv2ファンデーションモデルとK-Nearest Neighbors(KNN)の識別版から抽出した特徴のみを事前学習することなく,大規模ファンデーションモデルの最近の進歩により,拡張地真実マスクの作成が促進されていることを示す。
極端にスパースなラベルを持つ画像に対しては,アノテーションの効率を大幅に向上させるHuman-in-the-loopの原則に基づくラベル付け手法を提案する。画像あたりに5点ラベルが存在する場合,我々のHuman-in-loop法は,14.2%の画素精度,19.7%のmIoU,そして10点ラベルがあれば8.9%と18.3%の精度で先行技術を上回っている。
人間のループラベリングが利用できない場合、KNNでDINOv2のデノベート機能を使用すると、以前の最先端の2.7%のピクセル精度、5.8%のmIoU(5グリッドポイント)で改善される。
セグメンテーションタスクでは,5点ラベルのみを使用した場合,画素精度8.8%,mIoUが13.5%向上する。
さらに,点ラベル配置スタイルと点数の違いが点ラベル伝搬品質に与える影響を総合的に検討し,点ラベルによる画像の効率向上を推奨する。
関連論文リスト
- Adaptive Anchor Label Propagation for Transductive Few-Shot Learning [18.29463308334406]
ラベル付きデータによる画像の分類の問題に対処する例は少ない。
識別可能な損失関数を最小化することによりラベル付きデータの特徴埋め込みを適応する新しいアルゴリズムを提案する。
提案アルゴリズムは,1ショット設定と5ショット設定において,標準ラベル伝搬アルゴリズムを最大7%,2%向上させる。
論文 参考訳(メタデータ) (2023-10-30T20:29:31Z) - Distilling Self-Supervised Vision Transformers for Weakly-Supervised
Few-Shot Classification & Segmentation [58.03255076119459]
視覚変換器(ViT)を利用した弱教師付き小ショット画像分類とセグメンテーションの課題に対処する。
提案手法は,自己監督型ViTからトークン表現を抽出し,その相関関係を利用して分類とセグメンテーションの予測を行う。
Pascal-5iとCOCO-20iの実験は、様々な監視設定において大きなパフォーマンス向上を示した。
論文 参考訳(メタデータ) (2023-07-07T06:16:43Z) - CorrMatch: Label Propagation via Correlation Matching for
Semi-Supervised Semantic Segmentation [73.89509052503222]
本稿では、CorrMatchと呼ばれる、単純だが実行可能な半教師付きセマンティックセマンティックセマンティックセマンティクス手法を提案する。
相関写像は、同一カテゴリのクラスタリングピクセルを容易に実現できるだけでなく、良好な形状情報も含んでいることを観察する。
我々は,高信頼画素を拡大し,さらに掘り出すために,画素の対の類似性をモデル化して画素伝搬を行う。
そして、相関地図から抽出した正確なクラス非依存マスクを用いて、領域伝搬を行い、擬似ラベルを強化する。
論文 参考訳(メタデータ) (2023-06-07T10:02:29Z) - SePiCo: Semantic-Guided Pixel Contrast for Domain Adaptive Semantic
Segmentation [52.62441404064957]
ドメイン適応セマンティックセグメンテーションは、ラベル付きソースドメインでトレーニングされたモデルを利用することで、ラベル付きターゲットドメイン上で満足のいく密度の予測を試みる。
多くの手法は、ノイズの多い擬似ラベルを緩和する傾向があるが、類似のセマンティックな概念を持つクロスドメインピクセル間の固有の接続を無視する。
本稿では,個々の画素のセマンティックな概念を強調する一段階適応フレームワークSePiCoを提案する。
論文 参考訳(メタデータ) (2022-04-19T11:16:29Z) - Point Label Aware Superpixels for Multi-species Segmentation of
Underwater Imagery [4.195806160139487]
水中車両を用いたサンゴ礁のモニタリングは、海洋調査の範囲を増やし、歴史的生態データの入手を可能にしている。
セマンティックセグメンテーションモデルを訓練するために,スーパーピクセル領域内のラベルを伝播する点ラベル認識手法を提案する。
本手法は,UCSDモザイクデータセットにおいて,画素精度が3.62%,ラベル伝搬タスクが平均IoUが8.35%向上した。
論文 参考訳(メタデータ) (2022-02-27T23:46:43Z) - LabOR: Labeling Only if Required for Domain Adaptive Semantic
Segmentation [79.96052264984469]
本稿では,UDAモデルが不確実な点に対して,少ないラベルを適応的に付与する手法を提案する。
作業コストを最小化しつつ、ドメイン適応型セマンティックセマンティックセマンティクスのための新しいフレームワークの利点を示す。
論文 参考訳(メタデータ) (2021-08-12T07:35:40Z) - Pseudo Pixel-level Labeling for Images with Evolving Content [5.573543601558405]
画像の手動アノテーションの労力を削減するために,擬似ピクセルレベルのラベル生成手法を提案する。
VGGとResNetのバックボーンを用いた2つのセマンティックセグメンテーションモデルを、擬似ラベリング法と最先端手法を用いてラベル付けした画像上で学習する。
以上の結果から, トレーニングプロセスにおいて, 最先端手法を用いて生成したデータの代わりに擬似ラベルを用いることで, VGGおよびResNetに基づくセマンティックセマンティックセグメンテーションモデルの平均IoUと周波数重み付きIoUを3.36%, 2.58%, 10倍改善することがわかった。
論文 参考訳(メタデータ) (2021-05-20T18:14:19Z) - Towards Good Practices for Efficiently Annotating Large-Scale Image
Classification Datasets [90.61266099147053]
多数の画像の分類ラベルを収集するための効率的なアノテーション戦略を検討する。
人間のラベリング作業を最小化するための修正とベストプラクティスを提案します。
ImageNet100の125kイメージサブセットのシミュレーション実験では、平均で0.35のアノテーションで80%のトップ-1の精度でアノテートできることが示されている。
論文 参考訳(メタデータ) (2021-04-26T16:29:32Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z) - PCAMs: Weakly Supervised Semantic Segmentation Using Point Supervision [12.284208932393073]
本稿では,ある点レベルのアノテーションが与えられた画像から意味的セグメンテーションを生成する新しい手法を提案する。
提案するCNNは,通常,地上の真理ラベルの代わりに擬似ラベルを用いて完全に教師される。
提案手法は,PASCAL VOC 2012 データセットを引用した PASCAL VOC 2012 のセマンティックセマンティックセマンティフィケーションのための技術結果の状態を達成し,より強いバウンディングボックスやリスグル管理のための技術手法よりも優れていた。
論文 参考訳(メタデータ) (2020-07-10T21:25:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。