CompGS++: Compressed Gaussian Splatting for Static and Dynamic Scene Representation
- URL: http://arxiv.org/abs/2504.13022v1
- Date: Thu, 17 Apr 2025 15:33:01 GMT
- Title: CompGS++: Compressed Gaussian Splatting for Static and Dynamic Scene Representation
- Authors: Xiangrui Liu, Xinju Wu, Shiqi Wang, Zhu Li, Sam Kwong,
- Abstract summary: CompGS++ is a novel framework that leverages compact Gaussian primitives to achieve accurate 3D modeling.<n>Our design is based on the principle of eliminating redundancy both between and within primitives.<n>Our implementation will be made publicly available on GitHub to facilitate further research.
- Score: 60.712165339762116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian splatting demonstrates proficiency for 3D scene modeling but suffers from substantial data volume due to inherent primitive redundancy. To enable future photorealistic 3D immersive visual communication applications, significant compression is essential for transmission over the existing Internet infrastructure. Hence, we propose Compressed Gaussian Splatting (CompGS++), a novel framework that leverages compact Gaussian primitives to achieve accurate 3D modeling with substantial size reduction for both static and dynamic scenes. Our design is based on the principle of eliminating redundancy both between and within primitives. Specifically, we develop a comprehensive prediction paradigm to address inter-primitive redundancy through spatial and temporal primitive prediction modules. The spatial primitive prediction module establishes predictive relationships for scene primitives and enables most primitives to be encoded as compact residuals, substantially reducing the spatial redundancy. We further devise a temporal primitive prediction module to handle dynamic scenes, which exploits primitive correlations across timestamps to effectively reduce temporal redundancy. Moreover, we devise a rate-constrained optimization module that jointly minimizes reconstruction error and rate consumption. This module effectively eliminates parameter redundancy within primitives and enhances the overall compactness of scene representations. Comprehensive evaluations across multiple benchmark datasets demonstrate that CompGS++ significantly outperforms existing methods, achieving superior compression performance while preserving accurate scene modeling. Our implementation will be made publicly available on GitHub to facilitate further research.
Related papers
- Enhancing 3D Gaussian Splatting Compression via Spatial Condition-based Prediction [24.061525432639943]
We introduce the prediction technique into the anchor-based Gaussian representation to effectively reduce the bit rate.<n>Our framework still achieves a bit rate savings of 24.42 percent.
arXiv Detail & Related papers (2025-03-30T06:41:43Z) - 4DGC: Rate-Aware 4D Gaussian Compression for Efficient Streamable Free-Viewpoint Video [56.04182926886754]
3D Gaussian Splatting (3DGS) has substantial potential for enabling photorealistic Free-Viewpoint Video (FVV) experiences.
Existing methods typically handle dynamic 3DGS representation and compression separately, motion information and the rate-distortion trade-off during training.
We propose 4DGC, a rate-aware 4D Gaussian compression framework that significantly reduces storage size while maintaining superior RD performance for FVV.
arXiv Detail & Related papers (2025-03-24T08:05:27Z) - Temporally Compressed 3D Gaussian Splatting for Dynamic Scenes [46.64784407920817]
Temporally Compressed 3D Gaussian Splatting (TC3DGS) is a novel technique designed specifically to compress dynamic 3D Gaussian representations.<n>Our experiments across multiple datasets demonstrate that TC3DGS achieves up to 67$times$ compression with minimal or no degradation in visual quality.
arXiv Detail & Related papers (2024-12-07T17:03:09Z) - HEMGS: A Hybrid Entropy Model for 3D Gaussian Splatting Data Compression [23.015728369640136]
3D Gaussian Splatting (3DGS) is popular for 3D modeling and image rendering, but this creates big challenges in data storage and transmission.<n>We propose a hybrid entropy model for 3DGS data compression, which comprises two primary components, a hyperprior network and an autoregressive network.<n>Our method achieves about 40% average reduction in size while maintaining the rendering quality over our baseline method and achieving state-of-the-art compression results.
arXiv Detail & Related papers (2024-11-27T16:08:59Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - MoDeGPT: Modular Decomposition for Large Language Model Compression [59.361006801465344]
This paper introduces textbfModular bfDecomposition (MoDeGPT), a novel structured compression framework.<n>MoDeGPT partitions the Transformer block into modules comprised of matrix pairs and reduces the hidden dimensions.<n>Our experiments show MoDeGPT, without backward propagation, matches or surpasses previous structured compression methods.
arXiv Detail & Related papers (2024-08-19T01:30:14Z) - CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting [68.94594215660473]
We propose an efficient 3D scene representation, named Compressed Gaussian Splatting (CompGS)
We exploit a small set of anchor primitives for prediction, allowing the majority of primitives to be encapsulated into highly compact residual forms.
Experimental results show that the proposed CompGS significantly outperforms existing methods, achieving superior compactness in 3D scene representation without compromising model accuracy and rendering quality.
arXiv Detail & Related papers (2024-04-15T04:50:39Z) - InstantSplat: Sparse-view Gaussian Splatting in Seconds [91.77050739918037]
We introduce InstantSplat, a novel approach for addressing sparse-view 3D scene reconstruction at lightning-fast speed.<n>InstantSplat employs a self-supervised framework that optimize 3D scene representation and camera poses.<n>It achieves an acceleration of over 30x in reconstruction and improves visual quality (SSIM) from 0.3755 to 0.7624 compared to traditional SfM with 3D-GS.
arXiv Detail & Related papers (2024-03-29T17:29:58Z) - Spatiotemporal Entropy Model is All You Need for Learned Video
Compression [9.227865598115024]
We propose a framework to compress raw-pixel frames (rather than residual images)
An entropy model is used to estimate thetemporal redundancy in a latent space rather than pixel level.
Experiments showed that the proposed method outperforms state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2021-04-13T10:38:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.