論文の概要: Bridging the Gap between Different Vocabularies for LLM Ensemble
- arxiv url: http://arxiv.org/abs/2404.09492v1
- Date: Mon, 15 Apr 2024 06:28:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 13:48:50.452594
- Title: Bridging the Gap between Different Vocabularies for LLM Ensemble
- Title(参考訳): LLMアンサンブルのための異なる語彙間のギャップを埋める
- Authors: Yangyifan Xu, Jinliang Lu, Jiajun Zhang,
- Abstract要約: 様々な大言語モデル(LLM)における語彙の相違は、これまでの研究を制約してきた。
語彙アライメント(EVA)を用いたLLMのアンサンブル手法を提案する。
EVAは様々なLLM間の語彙ギャップを橋渡しし、各生成ステップで巧妙にアンサンブルすることができる。
- 参考スコア(独自算出の注目度): 10.669552498083709
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensembling different large language models (LLMs) to unleash their complementary potential and harness their individual strengths is highly valuable. Nevertheless, vocabulary discrepancies among various LLMs have constrained previous studies to either selecting or blending completely generated outputs. This limitation hinders the dynamic correction and enhancement of outputs during the generation process, resulting in a limited capacity for effective ensemble. To address this issue, we propose a novel method to Ensemble LLMs via Vocabulary Alignment (EVA). EVA bridges the lexical gap among various LLMs, enabling meticulous ensemble at each generation step. Specifically, we first learn mappings between the vocabularies of different LLMs with the assistance of overlapping tokens. Subsequently, these mappings are employed to project output distributions of LLMs into a unified space, facilitating a fine-grained ensemble. Finally, we design a filtering strategy to exclude models that generate unfaithful tokens. Experimental results on commonsense reasoning, arithmetic reasoning, machine translation, and data-to-text generation tasks demonstrate the superiority of our approach compared with individual LLMs and previous ensemble methods conducted on complete outputs. Further analyses confirm that our approach can leverage knowledge from different language models and yield consistent improvement.
- Abstract(参考訳): 様々な大きな言語モデル(LLM)を組み立てて、補完的なポテンシャルを解き放ち、個々の強みを活用することは非常に貴重である。
それでも、様々なLLMにおける語彙の相違は、完全に生成された出力を選択するか、ブレンディングするかに以前の研究を制約している。
この制限は、生成プロセス中に出力の動的修正と強化を妨げ、効果的なアンサンブルのための限られた能力をもたらす。
この問題に対処するため,Vocabulary Alignment (EVA) を用いたLLMのアンサンブル手法を提案する。
EVAは様々なLLM間の語彙ギャップを橋渡しし、各生成ステップで巧妙にアンサンブルすることができる。
具体的には,異なるLLMの語彙間のマッピングを,重なり合うトークンの助けを借りて学習する。
その後、これらのマッピングはLLMの出力分布を統一された空間に投影し、微細なアンサンブルを容易にする。
最後に、不誠実なトークンを生成するモデルを除外するフィルタリング戦略を設計する。
共通文推論,算術的推論,機械翻訳,データ・テキスト生成タスクに関する実験結果から,各LLMや従来の全出力を用いたアンサンブル手法と比較して,我々のアプローチの優位性を示した。
さらなる分析により、我々のアプローチは異なる言語モデルからの知識を活用でき、一貫した改善が得られることが確認される。
関連論文リスト
- GenEOL: Harnessing the Generative Power of LLMs for Training-Free Sentence Embeddings [7.957874169275548]
トレーニング不要な埋め込み手法は、事前訓練された大規模言語モデル(LLM)を直接利用してテキストを埋め込む。
そこで本研究では,LLMを用いて意味を保った文の多種多様な変換を生成する手法を提案する。
論文 参考訳(メタデータ) (2024-10-18T17:36:53Z) - PEDAL: Enhancing Greedy Decoding with Large Language Models using Diverse Exemplars [1.450405446885067]
多様な推論経路を持つ自己認識技術は、大言語モデル(LLM)を用いたテキスト生成において顕著な性能向上を示した。
PEDALは,多種多様な模範的プロンプトの強みとLLMに基づくアグリゲーションを組み合わせて,総合的な性能向上を実現するハイブリッドな自己組織化手法である。
論文 参考訳(メタデータ) (2024-08-16T17:54:09Z) - Extend Model Merging from Fine-Tuned to Pre-Trained Large Language Models via Weight Disentanglement [72.97553348776425]
我々は、FTからPT LLMへのマージ技術の適用性を拡大するための先駆的な取り組みを行っている。
WeIght DisENtanglement (WIDEN) に基づくアプローチを導入し、マージ範囲を効果的に拡張する。
Qwen1.5-Chat (FT LLM with instruction-following skills) と Sailor (PT LLM with multilingual abilities) を7Bおよび14Bモデルスケールにマージする。
論文 参考訳(メタデータ) (2024-08-06T10:46:46Z) - Ensemble Learning for Heterogeneous Large Language Models with Deep Parallel Collaboration [39.35476224845088]
大規模言語モデル(LLM)は様々なタスクにおいて補完的な強みを示し、LLMアンサンブルの研究を動機付けている。
本稿では,各復号ステップで異なるLLMから得られる情報的確率分布を融合した学習自由アンサンブルフレームワークDeePEnを提案する。
論文 参考訳(メタデータ) (2024-04-19T08:52:22Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
本稿では,大規模言語モデル(LLM)における知識融合の概念を紹介する。
我々は、それらの集合的知識と独特な強みを外部化し、それによってターゲットモデルの能力が、どのソースLLMよりも高められるようにします。
この結果から,LLMの融合により,推論やコモンセンス,コード生成など,対象モデルの性能が向上することが確認された。
論文 参考訳(メタデータ) (2024-01-19T05:02:46Z) - Boosting Large Language Model for Speech Synthesis: An Empirical Study [86.89548753080432]
大規模言語モデル(LLM)は自然言語処理において大きな進歩を遂げており、言語能力は音声や視覚など他のモダリティにも拡張されている。
我々は,事前学習したLLM LLaMA/OPTと音声合成モデルVALL-Eを組み合わせることで,LLMの強化と音声生成能力の総合的な実証調査を行う。
テキストエンコーダとしてLLMとVALL-Eを組み合わせることで,LLMとVALL-Eの3つの統合手法を比較した。
論文 参考訳(メタデータ) (2023-12-30T14:20:04Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - IERL: Interpretable Ensemble Representation Learning -- Combining
CrowdSourced Knowledge and Distributed Semantic Representations [11.008412414253662]
大言語モデル(LLM)は、単語の意味を分散意味論の形でエンコードする。
近年の研究では、LLMは意図しない、一貫性のない、あるいは間違ったテキストを出力として生成する傾向があることが示されている。
本稿では,LLMとクラウドソースの知識表現を体系的に組み合わせた新しいアンサンブル学習手法であるInterpretable Ensemble Representation Learning (IERL)を提案する。
論文 参考訳(メタデータ) (2023-06-24T05:02:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。