論文の概要: GenEOL: Harnessing the Generative Power of LLMs for Training-Free Sentence Embeddings
- arxiv url: http://arxiv.org/abs/2410.14635v1
- Date: Fri, 18 Oct 2024 17:36:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:26:59.050128
- Title: GenEOL: Harnessing the Generative Power of LLMs for Training-Free Sentence Embeddings
- Title(参考訳): GenEOL: 学習不要な文埋め込みのためのLLMの生成力を損なう
- Authors: Raghuveer Thirukovalluru, Bhuwan Dhingra,
- Abstract要約: トレーニング不要な埋め込み手法は、事前訓練された大規模言語モデル(LLM)を直接利用してテキストを埋め込む。
そこで本研究では,LLMを用いて意味を保った文の多種多様な変換を生成する手法を提案する。
- 参考スコア(独自算出の注目度): 7.957874169275548
- License:
- Abstract: Training-free embedding methods directly leverage pretrained large language models (LLMs) to embed text, bypassing the costly and complex procedure of contrastive learning. Previous training-free embedding methods have mainly focused on optimizing embedding prompts and have overlooked the benefits of utilizing the generative abilities of LLMs. We propose a novel method, GenEOL, which uses LLMs to generate diverse transformations of a sentence that preserve its meaning, and aggregates the resulting embeddings of these transformations to enhance the overall sentence embedding. GenEOL significantly outperforms the existing training-free embedding methods by an average of 2.85 points across several LLMs on the sentence semantic text similarity (STS) benchmark. Our analysis shows that GenEOL stabilizes representation quality across LLM layers and is robust to perturbations of embedding prompts. GenEOL also achieves notable gains on multiple clustering, reranking and pair-classification tasks from the MTEB benchmark.
- Abstract(参考訳): トレーニング不要な埋め込み手法は、事前訓練済みの大規模言語モデル(LLM)を直接利用してテキストを埋め込み、高価で複雑なコントラスト学習をバイパスする。
従来のトレーニング不要な埋め込み法は主に埋め込みプロンプトの最適化に重点を置いており、LLMの生成能力を利用する利点を見落としている。
我々は,LLMを用いて意味を保った文の多種多様な変換を生成し,その結果の埋め込みを集約し,文全体の埋め込みを強化する新しい手法GenEOLを提案する。
GenEOL は、文意味テキスト類似性(STS)ベンチマークにおいて、いくつかの LLM で平均2.85 ポイントのトレーニング不要な埋め込み手法を著しく上回っている。
解析の結果,GenEOLはLLM層間の表現品質を安定させ,組込みプロンプトの摂動に頑健であることがわかった。
GenEOLはまた、MTEBベンチマークから複数のクラスタリング、再ランク付け、ペア分類タスクにおいて顕著な利益を得ている。
関連論文リスト
- A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs [74.35290684163718]
大規模言語モデル(LLM)開発における最大の課題は、その面倒な事前トレーニングコストである。
本稿では,小言語モデル(SLM)を活用して,LLMの事前学習効率と品質を改善するための有望なパラダイムについて検討する。
論文 参考訳(メタデータ) (2024-10-24T14:31:52Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)を改善するための有望な方法である。
本稿では,RAGのためのスケーラブルでプラガブルな仮想トークンを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:44:54Z) - Bridging the Gap between Different Vocabularies for LLM Ensemble [10.669552498083709]
様々な大言語モデル(LLM)における語彙の相違は、これまでの研究を制約してきた。
語彙アライメント(EVA)を用いたLLMのアンサンブル手法を提案する。
EVAは様々なLLM間の語彙ギャップを橋渡しし、各生成ステップで巧妙にアンサンブルすることができる。
論文 参考訳(メタデータ) (2024-04-15T06:28:20Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Instruction Fusion: Advancing Prompt Evolution through Hybridization [27.321629102942754]
本稿では,既存の即時進化手法の制約について検討し,新しいアプローチであるインストラクション・フュージョン(IF)を導入する。
IFは、ハイブリッド化プロセスを通じて、2つの異なるプロンプトを革新的に組み合わせ、コードLLMのトレーニングプロンプトの進化を強化する。
実験の結果,提案手法は従来の手法の欠点を効果的に解決し,コードLLMの性能を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-12-25T11:00:37Z) - Prompt Optimization via Adversarial In-Context Learning [51.18075178593142]
adv-ICLは、ジェネレータとディスクリミネータの間の2プレイヤーゲームとして実装される。
ジェネレータは、判別器を騙すのに十分な出力を生成する。
本稿では,Adv-ICLが最先端のプロンプト最適化技術を大幅に改善することを示す。
論文 参考訳(メタデータ) (2023-12-05T09:44:45Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
トレーニングセットの低品質データは、通常、チューニングのチューニングに有害である。
我々は「反射チューニング」と呼ばれる新しい手法を提案する。
このアプローチでは、オラクルLSMを使用して、データ内の命令や応答の質を検査し、向上することで、元のトレーニングデータをリサイクルする。
論文 参考訳(メタデータ) (2023-10-18T05:13:47Z) - Large Language Models can Contrastively Refine their Generation for Better Sentence Representation Learning [57.74233319453229]
大規模言語モデル(LLM)は画期的な技術として登場し、それらの非並列テキスト生成能力は、基本的な文表現学習タスクへの関心を喚起している。
コーパスを生成するためにLLMの処理を分解するマルチレベルコントラスト文表現学習フレームワークであるMultiCSRを提案する。
実験の結果,MultiCSRはより高度なLCMをChatGPTの性能を超えつつ,ChatGPTに適用することで最先端の成果を得られることがわかった。
論文 参考訳(メタデータ) (2023-10-17T03:21:43Z) - Generation-driven Contrastive Self-training for Zero-shot Text Classification with Instruction-following LLM [31.25193238045053]
我々は、より小さな言語モデルの訓練を支援するために、大規模言語モデルの強力な生成力を利用する新しい手法、GenCoを導入する。
本手法では,LLMは2つの重要な方法で,より小さなモデルの自己学習ループにおいて重要な役割を果たす。
予測ラベルに条件付き入力テキストを書き換えることで、高品質なトレーニングペアの開発を支援する。
論文 参考訳(メタデータ) (2023-04-24T07:35:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。