論文の概要: Explainable Generative AI (GenXAI): A Survey, Conceptualization, and Research Agenda
- arxiv url: http://arxiv.org/abs/2404.09554v1
- Date: Mon, 15 Apr 2024 08:18:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 13:38:59.061426
- Title: Explainable Generative AI (GenXAI): A Survey, Conceptualization, and Research Agenda
- Title(参考訳): 説明可能な生成AI(GenXAI):調査,概念化,研究アジェンダ
- Authors: Johannes Schneider,
- Abstract要約: 我々は、XAIがGenAIの台頭とともに重要になった理由とその説明可能性研究の課題について詳述する。
私たちはまた、検証可能性、対話性、セキュリティ、コストといった側面をカバーし、説明が満たすべき新しいデシラタも披露します。
- 参考スコア(独自算出の注目度): 1.8592384822257952
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI (GenAI) marked a shift from AI being able to recognize to AI being able to generate solutions for a wide variety of tasks. As the generated solutions and applications become increasingly more complex and multi-faceted, novel needs, objectives, and possibilities have emerged for explainability (XAI). In this work, we elaborate on why XAI has gained importance with the rise of GenAI and its challenges for explainability research. We also unveil novel and emerging desiderata that explanations should fulfill, covering aspects such as verifiability, interactivity, security, and cost. To this end, we focus on surveying existing works. Furthermore, we provide a taxonomy of relevant dimensions that allows us to better characterize existing XAI mechanisms and methods for GenAI. We discuss different avenues to ensure XAI, from training data to prompting. Our paper offers a short but concise technical background of GenAI for non-technical readers, focusing on text and images to better understand novel or adapted XAI techniques for GenAI. However, due to the vast array of works on GenAI, we decided to forego detailed aspects of XAI related to evaluation and usage of explanations. As such, the manuscript interests both technically oriented people and other disciplines, such as social scientists and information systems researchers. Our research roadmap provides more than ten directions for future investigation.
- Abstract(参考訳): 生成AI(GenAI)は、AIが認識できるものから、さまざまなタスクのソリューションを生成できるものへとシフトした。
生成したソリューションやアプリケーションがますます複雑で多面的になるにつれて、説明可能性(XAI)に対する新しいニーズ、目的、可能性が現れている。
本稿では、XAIがGenAIの台頭とともに重要になった理由とその説明可能性研究の課題について詳述する。
私たちはまた、検証可能性、対話性、セキュリティ、コストといった側面をカバーし、説明が満たすべき新しいデシラタも披露します。
この目的のために、我々は既存の作品の調査に焦点をあてる。
さらに、既存のXAIメカニズムやGenAIの手法をよりよく特徴付けることができるような、関連する次元の分類を提供する。
我々は、トレーニングデータからプロンプトまで、XAIを確保するためのさまざまな道について論じる。
本稿は,GenAIの斬新さや適応したXAI技術をよりよく理解するために,テキストや画像に焦点をあてた,非技術読者のためのGenAIの簡潔かつ簡潔な技術的背景を提供する。
しかし、GenAIに関する膨大な研究により、我々はXAIの詳細な側面が説明書の評価や使用に関係していることを予見することにした。
このように、この写本は技術的に重視される人々と、社会科学者や情報システム研究者といった他の分野の両方に関心を持っている。
私たちの研究ロードマップは、今後の調査に10以上の道程を提供しています。
関連論文リスト
- Generative Artificial Intelligence Meets Synthetic Aperture Radar: A Survey [49.29751866761522]
本稿では,GenAIとSARの交差点について検討する。
まず、SAR分野における一般的なデータ生成ベースのアプリケーションについて説明する。
次に、最新のGenAIモデルの概要を体系的にレビューする。
最後に、SARドメインの対応するアプリケーションも含まれる。
論文 参考訳(メタデータ) (2024-11-05T03:06:00Z) - Generative artificial intelligence in dentistry: Current approaches and future challenges [0.0]
生成AI(GenAI)モデルは、複雑なモデルと対話する自然言語インターフェースを提供することによって、AIのユーザビリティギャップを橋渡しする。
歯科教育では、GenAIモデルのみを推進し、多くの疑問を解決できる機会を得た。
GenAIは、新しい薬物発見から学術論文の補助まで、歯科医学研究にも利用することができる。
論文 参考訳(メタデータ) (2024-07-24T03:33:47Z) - Model-based Maintenance and Evolution with GenAI: A Look into the Future [47.93555901495955]
我々は、モデルベースエンジニアリング(MBM&E)の限界に対処する手段として、生成人工知能(GenAI)を用いることができると論じる。
我々は、エンジニアの学習曲線の削減、レコメンデーションによる効率の最大化、ドメイン問題を理解するための推論ツールとしてのGenAIの使用を提案する。
論文 参考訳(メタデータ) (2024-07-09T23:13:26Z) - Generative AI for Visualization: State of the Art and Future Directions [7.273704442256712]
本稿では,GenAIを活用した過去の可視化研究を振り返る。
本稿では,世代別アルゴリズムとその応用と限界を要約することにより,今後のGenAI4VIS研究に有用な知見を提供する。
論文 参考訳(メタデータ) (2024-04-28T11:27:30Z) - Identifying and Mitigating the Security Risks of Generative AI [179.2384121957896]
本稿では,GenAIによる双対ジレンマに関するGoogleのワークショップの成果を報告する。
GenAIはまた、攻撃者が新しい攻撃を生成し、既存の攻撃のベロシティと有効性を高めるためにも使用できる。
この話題について,コミュニティの短期的,長期的目標について論じる。
論文 参考訳(メタデータ) (2023-08-28T18:51:09Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
説明可能なAI(XAI)を評価する方法に関するコンセンサスの欠如は、この分野の進歩を妨げる。
このギャップを埋める一つの方法は、異なるユーザ要求を考慮に入れた評価方法を開発することである、と我々は主張する。
論文 参考訳(メタデータ) (2022-06-22T05:17:33Z) - Investigating Explainability of Generative AI for Code through
Scenario-based Design [44.44517254181818]
生成AI(GenAI)技術は成熟し、ソフトウェア工学のようなアプリケーションドメインに適用されています。
私たちは43人のソフトウェアエンジニアと9つのワークショップを開催しました。そこでは、最先端のジェネレーティブAIモデルの実例を使って、ユーザの説明可能性のニーズを導き出しました。
我々の研究は、GenAIのコードに対する説明可能性の必要性を探求し、新しいドメインにおけるXAIの技術開発を人間中心のアプローチがいかに促進するかを実証する。
論文 参考訳(メタデータ) (2022-02-10T08:52:39Z) - Explainable AI (XAI): A Systematic Meta-Survey of Current Challenges and
Future Opportunities [0.0]
説明可能なAI(XAI)は、AIをより透明性を高め、クリティカルドメインにおけるAIの採用を促進するために提案されている。
本研究は,XAIにおける課題と今後の研究方向性の体系的なメタサーベイである。
論文 参考訳(メタデータ) (2021-11-11T19:06:13Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - Opportunities and Challenges in Explainable Artificial Intelligence
(XAI): A Survey [2.7086321720578623]
深層ニューラルネットワークのブラックボックスの性質は、ミッションクリティカルなアプリケーションでの利用に挑戦する。
XAIは、AI決定に関する高品質な解釈可能、直感的、人間に理解可能な説明を生成するためのツール、テクニック、アルゴリズムのセットを推進している。
論文 参考訳(メタデータ) (2020-06-16T02:58:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。