論文の概要: Generative AI for Visualization: State of the Art and Future Directions
- arxiv url: http://arxiv.org/abs/2404.18144v1
- Date: Sun, 28 Apr 2024 11:27:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 17:43:14.527296
- Title: Generative AI for Visualization: State of the Art and Future Directions
- Title(参考訳): 可視化のためのジェネレーティブAI - 最先端と今後の方向性
- Authors: Yilin Ye, Jianing Hao, Yihan Hou, Zhan Wang, Shishi Xiao, Yuyu Luo, Wei Zeng,
- Abstract要約: 本稿では,GenAIを活用した過去の可視化研究を振り返る。
本稿では,世代別アルゴリズムとその応用と限界を要約することにより,今後のGenAI4VIS研究に有用な知見を提供する。
- 参考スコア(独自算出の注目度): 7.273704442256712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI (GenAI) has witnessed remarkable progress in recent years and demonstrated impressive performance in various generation tasks in different domains such as computer vision and computational design. Many researchers have attempted to integrate GenAI into visualization framework, leveraging the superior generative capacity for different operations. Concurrently, recent major breakthroughs in GenAI like diffusion model and large language model have also drastically increase the potential of GenAI4VIS. From a technical perspective, this paper looks back on previous visualization studies leveraging GenAI and discusses the challenges and opportunities for future research. Specifically, we cover the applications of different types of GenAI methods including sequence, tabular, spatial and graph generation techniques for different tasks of visualization which we summarize into four major stages: data enhancement, visual mapping generation, stylization and interaction. For each specific visualization sub-task, we illustrate the typical data and concrete GenAI algorithms, aiming to provide in-depth understanding of the state-of-the-art GenAI4VIS techniques and their limitations. Furthermore, based on the survey, we discuss three major aspects of challenges and research opportunities including evaluation, dataset, and the gap between end-to-end GenAI and generative algorithms. By summarizing different generation algorithms, their current applications and limitations, this paper endeavors to provide useful insights for future GenAI4VIS research.
- Abstract(参考訳): 生成AI(GenAI)は近年顕著な進歩を遂げており、コンピュータビジョンや計算設計など、さまざまな領域における様々な世代タスクにおいて顕著なパフォーマンスを示している。
多くの研究者がGenAIを視覚化フレームワークに統合しようと試みており、異なる操作に対して優れた生成能力を活用している。
同時に、GenAIの拡散モデルや大規模言語モデルといった最近の大きなブレークスルーも、GenAI4VISの可能性を劇的に高めている。
技術的観点からは、GenAIを活用したこれまでの可視化研究を振り返り、今後の研究の課題と機会について論じる。
具体的には、データ拡張、視覚マッピング生成、スタイリング、インタラクションの4つの主要なステージにまとめる、可視化の異なるタスクに対するシーケンス、表、空間、グラフ生成技術を含む、さまざまなタイプのGenAI手法の適用について述べる。
それぞれの可視化サブタスクに対して、最先端のGenAI4VIS技術とその制限を詳細に理解することを目的とした、典型的なデータおよび具体的なGenAIアルゴリズムについて説明する。
さらに,本調査に基づき,評価,データセット,エンド・ツー・エンドのGenAIと生成アルゴリズムのギャップなど,課題と研究機会の3つの主要な側面について論じる。
本稿では,世代別アルゴリズムとその応用と限界を要約することにより,今後のGenAI4VIS研究に有用な知見を提供する。
関連論文リスト
- Generative Artificial Intelligence Meets Synthetic Aperture Radar: A Survey [49.29751866761522]
本稿では,GenAIとSARの交差点について検討する。
まず、SAR分野における一般的なデータ生成ベースのアプリケーションについて説明する。
次に、最新のGenAIモデルの概要を体系的にレビューする。
最後に、SARドメインの対応するアプリケーションも含まれる。
論文 参考訳(メタデータ) (2024-11-05T03:06:00Z) - Generative AI Enabled Matching for 6G Multiple Access [51.00960374545361]
我々は6G多重アクセスをサポートするGenAI対応マッチング生成フレームワークを提案する。
我々のフレームワークは、与えられた条件と事前定義された報酬に基づいて、より効果的なマッチング戦略を生成することができることを示す。
論文 参考訳(メタデータ) (2024-10-29T13:01:26Z) - On the Limitations and Prospects of Machine Unlearning for Generative AI [7.795648142175443]
Generative AI(GenAI)は、潜伏変数やその他のデータモダリティから現実的で多様なデータサンプルを合成することを目的としている。
GenAIは自然言語、画像、オーディオ、グラフなど、さまざまな領域で顕著な成果を上げている。
しかし、データプライバシ、セキュリティ、倫理に課題やリスクも生じている。
論文 参考訳(メタデータ) (2024-08-01T08:35:40Z) - Model-based Maintenance and Evolution with GenAI: A Look into the Future [47.93555901495955]
我々は、モデルベースエンジニアリング(MBM&E)の限界に対処する手段として、生成人工知能(GenAI)を用いることができると論じる。
我々は、エンジニアの学習曲線の削減、レコメンデーションによる効率の最大化、ドメイン問題を理解するための推論ツールとしてのGenAIの使用を提案する。
論文 参考訳(メタデータ) (2024-07-09T23:13:26Z) - Explainable Generative AI (GenXAI): A Survey, Conceptualization, and Research Agenda [1.8592384822257952]
我々は、XAIがGenAIの台頭とともに重要になった理由とその説明可能性研究の課題について詳述する。
私たちはまた、検証可能性、対話性、セキュリティ、コストといった側面をカバーし、説明が満たすべき新しいデシラタも披露します。
論文 参考訳(メタデータ) (2024-04-15T08:18:16Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
本研究では,人間中心型視覚タスクにおけるデータ拡張手法の包括的分析を行う。
それは、人物のReID、人間のパーシング、人間のポーズ推定、歩行者検出など、幅広い研究領域に展開している。
我々の研究は、データ拡張手法をデータ生成とデータ摂動の2つの主なタイプに分類する。
論文 参考訳(メタデータ) (2024-03-13T16:05:18Z) - Generative AI and Process Systems Engineering: The Next Frontier [0.5937280131734116]
本稿では,大規模言語モデル (LLM) のような新しい生成人工知能(GenAI)モデルが,プロセスシステム工学 (PSE) におけるソリューション方法論をいかに拡張するかを考察する。
これらの最先端のGenAIモデル、特にファンデーションモデル(FM)は、広範な汎用データセットで事前トレーニングされている。
この記事では、マルチスケールモデリング、データ要件、評価指標とベンチマーク、信頼性と安全性など、PSE内でGenAIを完全に活用する上での潜在的な課題を特定し、議論する。
論文 参考訳(メタデータ) (2024-02-15T18:20:42Z) - GenLens: A Systematic Evaluation of Visual GenAI Model Outputs [33.93591473459988]
GenLensは、GenAIモデル出力の体系的評価のために設計されたビジュアル分析インタフェースである。
モデル開発者によるユーザ調査によると、GenLensは、高い満足度で証明されたワークフローを効果的に強化する。
論文 参考訳(メタデータ) (2024-02-06T04:41:06Z) - State of the Art on Diffusion Models for Visual Computing [191.6168813012954]
本稿では,拡散モデルの基本数学的概念,実装の詳細,および一般的な安定拡散モデルの設計選択を紹介する。
また,拡散に基づく生成と編集に関する文献の急速な発展を概観する。
利用可能なデータセット、メトリクス、オープンな課題、社会的意味について議論する。
論文 参考訳(メタデータ) (2023-10-11T05:32:29Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPTおよびその他の生成AI(GAI)技術は、人工知能生成コンテンツ(AIGC)のカテゴリに属している。
AIGCの目標は、コンテンツ作成プロセスをより効率的かつアクセスしやすくし、高品質なコンテンツをより高速に生産できるようにすることである。
論文 参考訳(メタデータ) (2023-03-07T20:36:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。