Modelling Language
- URL: http://arxiv.org/abs/2404.09579v1
- Date: Mon, 15 Apr 2024 08:40:01 GMT
- Title: Modelling Language
- Authors: Jumbly Grindrod,
- Abstract summary: This paper argues that large language models have a valuable scientific role to play in serving as scientific models of a language.
It draws upon recent work in philosophy of science to show how large language models could serve as scientific models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper argues that large language models have a valuable scientific role to play in serving as scientific models of a language. Linguistic study should not only be concerned with the cognitive processes behind linguistic competence, but also with language understood as an external, social entity. Once this is recognized, the value of large language models as scientific models becomes clear. This paper defends this position against a number of arguments to the effect that language models provide no linguistic insight. It also draws upon recent work in philosophy of science to show how large language models could serve as scientific models.
Related papers
- Analyzing The Language of Visual Tokens [48.62180485759458]
We take a natural-language-centric approach to analyzing discrete visual languages.
We show that higher token innovation drives greater entropy and lower compression, with tokens predominantly representing object parts.
We also show that visual languages lack cohesive grammatical structures, leading to higher perplexity and weaker hierarchical organization compared to natural languages.
arXiv Detail & Related papers (2024-11-07T18:59:28Z) - Trustworthy Alignment of Retrieval-Augmented Large Language Models via Reinforcement Learning [84.94709351266557]
We focus on the trustworthiness of language models with respect to retrieval augmentation.
We deem that retrieval-augmented language models have the inherent capabilities of supplying response according to both contextual and parametric knowledge.
Inspired by aligning language models with human preference, we take the first step towards aligning retrieval-augmented language models to a status where it responds relying merely on the external evidence.
arXiv Detail & Related papers (2024-10-22T09:25:21Z) - Language Models as Models of Language [0.0]
This chapter critically examines the potential contributions of modern language models to theoretical linguistics.
I review a growing body of empirical evidence suggesting that language models can learn hierarchical syntactic structure and exhibit sensitivity to various linguistic phenomena.
I conclude that closer collaboration between theoretical linguists and computational researchers could yield valuable insights.
arXiv Detail & Related papers (2024-08-13T18:26:04Z) - The Sociolinguistic Foundations of Language Modeling [34.02231580843069]
We argue that large language models are inherently models of varieties of language.
We discuss how this perspective can help address five basic challenges in language modeling.
arXiv Detail & Related papers (2024-07-12T13:12:55Z) - Formal Aspects of Language Modeling [74.16212987886013]
Large language models have become one of the most commonly deployed NLP inventions.
These notes are the accompaniment to the theoretical portion of the ETH Z"urich course on large language models.
arXiv Detail & Related papers (2023-11-07T20:21:42Z) - Large Language Models for Scientific Synthesis, Inference and
Explanation [56.41963802804953]
We show how large language models can perform scientific synthesis, inference, and explanation.
We show that the large language model can augment this "knowledge" by synthesizing from the scientific literature.
This approach has the further advantage that the large language model can explain the machine learning system's predictions.
arXiv Detail & Related papers (2023-10-12T02:17:59Z) - Beyond the limitations of any imaginable mechanism: large language
models and psycholinguistics [0.0]
Large language models provide a model for language.
They are useful as a practical tool, as an illustrative comparative, and philosophical, as a basis for recasting the relationship between language and thought.
arXiv Detail & Related papers (2023-02-28T20:49:38Z) - Testing the Ability of Language Models to Interpret Figurative Language [69.59943454934799]
Figurative and metaphorical language are commonplace in discourse.
It remains an open question to what extent modern language models can interpret nonliteral phrases.
We introduce Fig-QA, a Winograd-style nonliteral language understanding task.
arXiv Detail & Related papers (2022-04-26T23:42:22Z) - Towards Zero-shot Language Modeling [90.80124496312274]
We construct a neural model that is inductively biased towards learning human languages.
We infer this distribution from a sample of typologically diverse training languages.
We harness additional language-specific side information as distant supervision for held-out languages.
arXiv Detail & Related papers (2021-08-06T23:49:18Z) - Uncovering Constraint-Based Behavior in Neural Models via Targeted
Fine-Tuning [9.391375268580806]
We show that competing linguistic processes within a language obscure underlying linguistic knowledge.
While human behavior has been found to be similar across languages, we find cross-linguistic variation in model behavior.
Our results suggest that models need to learn both the linguistic constraints in a language and their relative ranking, with mismatches in either producing non-human-like behavior.
arXiv Detail & Related papers (2021-06-02T14:52:11Z) - The Rediscovery Hypothesis: Language Models Need to Meet Linguistics [8.293055016429863]
We study whether linguistic knowledge is a necessary condition for good performance of modern language models.
We show that language models that are significantly compressed but perform well on their pretraining objectives retain good scores when probed for linguistic structures.
This result supports the rediscovery hypothesis and leads to the second contribution of our paper: an information-theoretic framework that relates language modeling objective with linguistic information.
arXiv Detail & Related papers (2021-03-02T15:57:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.