論文の概要: Reactive Model Correction: Mitigating Harm to Task-Relevant Features via Conditional Bias Suppression
- arxiv url: http://arxiv.org/abs/2404.09601v1
- Date: Mon, 15 Apr 2024 09:16:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 12:50:12.967742
- Title: Reactive Model Correction: Mitigating Harm to Task-Relevant Features via Conditional Bias Suppression
- Title(参考訳): リアクティブモデル補正:条件付きバイアス抑制によるハームからタスク関連機能への移行
- Authors: Dilyara Bareeva, Maximilian Dreyer, Frederik Pahde, Wojciech Samek, Sebastian Lapuschkin,
- Abstract要約: ディープニューラルネットワークは、高リスクアプリケーションにおいて致命的な結果をもたらす可能性のあるトレーニングデータにおいて、学習と急激な相関に依存する傾向があります。
余剰訓練を伴わずにポストホックに適用できる有害な特徴に対するモデル依存を抑制するための様々なアプローチが提案されている。
本稿では,モデル由来の知識とeXplainable Artificial Intelligence(XAI)の洞察に基づくリアクティブアプローチを提案する。
- 参考スコア(独自算出の注目度): 12.44857030152608
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Deep Neural Networks are prone to learning and relying on spurious correlations in the training data, which, for high-risk applications, can have fatal consequences. Various approaches to suppress model reliance on harmful features have been proposed that can be applied post-hoc without additional training. Whereas those methods can be applied with efficiency, they also tend to harm model performance by globally shifting the distribution of latent features. To mitigate unintended overcorrection of model behavior, we propose a reactive approach conditioned on model-derived knowledge and eXplainable Artificial Intelligence (XAI) insights. While the reactive approach can be applied to many post-hoc methods, we demonstrate the incorporation of reactivity in particular for P-ClArC (Projective Class Artifact Compensation), introducing a new method called R-ClArC (Reactive Class Artifact Compensation). Through rigorous experiments in controlled settings (FunnyBirds) and with a real-world dataset (ISIC2019), we show that introducing reactivity can minimize the detrimental effect of the applied correction while simultaneously ensuring low reliance on spurious features.
- Abstract(参考訳): ディープニューラルネットワークは、高リスクアプリケーションにおいて致命的な結果をもたらす可能性のあるトレーニングデータにおいて、学習と急激な相関に依存する傾向があります。
余剰訓練を伴わずにポストホックに適用できる有害な特徴に対するモデル依存を抑制するための様々なアプローチが提案されている。
これらの手法は効率よく適用できるが、潜在特徴の分布をグローバルにシフトすることでモデルの性能を損なう傾向がある。
モデル行動の意図しない過度な補正を軽減するために,モデル由来の知識とeXplainable Artificial Intelligence(XAI)の洞察に基づくリアクティブアプローチを提案する。
P-ClArC (Projective Class Artifact Compensation, Projective Class Artifact Compensation), R-ClArC (Reactive Class Artifact Compensation, R-ClArC) と呼ばれる新しい手法を導入した。
制御された設定(FunnyBirds)と実世界のデータセット(ISIC2019)の厳密な実験を通じて、反応性の導入は、適用された補正の有害な効果を最小限に抑えつつ、刺激的な特徴への低依存を同時に確保できることを示す。
関連論文リスト
- Automatic debiasing of neural networks via moment-constrained learning [0.0]
偏差推定器の回帰関数をネーティブに学習し,対象関数のサンプル平均値を取得する。
本稿では,自動脱バイアスの欠点に対処する新しいRR学習手法として,モーメント制約学習を提案する。
論文 参考訳(メタデータ) (2024-09-29T20:56:54Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
低ランク近似技術は、微調整された大規模言語モデルのデファクトスタンダードとなっている。
本稿では,これらの手法が初期訓練済みデータ分布から微調整データセットのシフトを捉える上での有効性について検討する。
低ランク微調整は好ましくない偏見や有害な振る舞いを必然的に保存することを示す。
論文 参考訳(メタデータ) (2024-05-28T20:43:53Z) - Learning Off-policy with Model-based Intrinsic Motivation For Active Online Exploration [15.463313629574111]
本稿では,連続制御タスクにおけるサンプル効率の高い探索手法について検討する。
本稿では,予測モデルと非政治学習要素を組み込んだRLアルゴリズムを提案する。
パラメーターのオーバーヘッドを発生させずに本質的な報酬を導き出す。
論文 参考訳(メタデータ) (2024-03-31T11:39:11Z) - Respect the model: Fine-grained and Robust Explanation with Sharing
Ratio Decomposition [29.491712784788188]
SRD(Sharing Ratio Decomposition)と呼ばれる新しいeXplainable AI(XAI)手法を提案する。
また、アクティベーション・パタン・オンリー予測(APOP)と呼ばれる興味深い観察結果を導入し、不活性ニューロンの重要性を強調した。
論文 参考訳(メタデータ) (2024-01-25T07:20:23Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Safe Deployment for Counterfactual Learning to Rank with Exposure-Based
Risk Minimization [63.93275508300137]
本稿では,安全な配置を理論的に保証する新たなリスク認識型対実学習ランク法を提案する。
提案手法の有効性を実験的に検証し,データが少ない場合の動作不良の早期回避に有効であることを示す。
論文 参考訳(メタデータ) (2023-04-26T15:54:23Z) - Feature Separation and Recalibration for Adversarial Robustness [18.975320671203132]
本稿では,特徴分離と再校正という手法を提案する。
分離と再校正を通じて、より堅牢な機能マップのために、悪意のある非不正なアクティベーションを再校正する。
これにより、計算オーバーヘッドが小さいため、既存の敵の訓練手法の堅牢性は最大8.57%向上する。
論文 参考訳(メタデータ) (2023-03-24T07:43:57Z) - Less is More: Mitigate Spurious Correlations for Open-Domain Dialogue
Response Generation Models by Causal Discovery [52.95935278819512]
本研究で得られたCGDIALOGコーパスに基づくオープンドメイン応答生成モデルのスプリアス相関に関する最初の研究を行った。
因果探索アルゴリズムに着想を得て,反応生成モデルの学習と推論のための新しいモデル非依存手法を提案する。
論文 参考訳(メタデータ) (2023-03-02T06:33:48Z) - A Fair Loss Function for Network Pruning [93.0013343535411]
本稿では, 刈り込み時のバイアスの抑制に使用できる簡易な改良型クロスエントロピー損失関数である, 性能重み付き損失関数を提案する。
偏見分類器を用いた顔分類と皮膚記述分類タスクの実験により,提案手法が簡便かつ効果的なツールであることを実証した。
論文 参考訳(メタデータ) (2022-11-18T15:17:28Z) - WSLRec: Weakly Supervised Learning for Neural Sequential Recommendation
Models [24.455665093145818]
我々は、WSLRecと呼ばれる新しいモデルに依存しないトレーニング手法を提案し、3段階のフレームワーク(事前学習、トップ$k$マイニング、本質的、微調整)を採用する。
WSLRec は、BR や ItemCF のようなモデルフリーメソッドから、余分な弱い監督のモデルを事前訓練することで、不完全性の問題を解決すると同時に、最上位の$k のマイニングを活用して、微調整のための弱い監督の信頼性の高いユーザ・イテム関連を検査することで、不正確な問題を解消する。
論文 参考訳(メタデータ) (2022-02-28T08:55:12Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
安全クリティカルな機械学習アプリケーションでは、モデルを敵の攻撃から守ることが不可欠である。
意味的に意味のある入力変換に対して、ディープラーニングモデルの証明可能な保証を提供することが重要である。
我々はChernoff-Cramer境界に基づく新しい普遍確率的証明手法を提案する。
論文 参考訳(メタデータ) (2021-09-22T12:46:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。