Tracking light-matter correlations in the Optical Bloch Equations: Dynamics, Energetics
- URL: http://arxiv.org/abs/2404.09648v3
- Date: Fri, 29 Nov 2024 15:47:26 GMT
- Title: Tracking light-matter correlations in the Optical Bloch Equations: Dynamics, Energetics
- Authors: Samyak Pratyush Prasad, Maria Maffei, Patrice A. Camati, Cyril Elouard, Alexia Auffèves,
- Abstract summary: We build a new kind of ACM which keeps track of the emitter-field correlations formed within each collision.
Within each collision, each system is shown to be driven by an effective Hamiltonian, while a remnant term captures the effect of correlations.
This new ACM can be extended to study the impact of correlations on various quantum open systems.
- Score: 0.0
- License:
- Abstract: Optical Bloch Equations (OBEs) are coarse-grained equations modeling the dynamics of driven quantum emitters coupled to heat baths. At the fundamental level, they are derived from the evolution of isolated emitter-field systems ruled by autonomous collision models (ACMs), where the fields encompass both drives and baths. The OBEs have given rise to consistent thermodynamic analyses, where work (heat) flows from the drive (bath). These models do not explicitly capture the emitter-field correlations formed within each collision. Here we build a new kind of ACM which keeps track of these correlations, and exploit it to propose a new thermodynamic framework where correlations play a central role. Within each collision, each system is shown to be driven by an effective Hamiltonian, while a remnant term captures the effect of correlations. On the emitter side, this results in splitting the thermal dissipator in two terms: self-driving term proportional to the atom coherences in the energy basis, and a correlation term. On the field side, the two respectively impact the field amplitude and fluctuations, resulting in a physically observable splitting. Following this, we define work-like (heat-like) flows as the energy changes stemming from the effective Hamiltonian dynamics (correlating processes) which are accessible through -dyne or spectroscopic measurements. Our approach differs from former analyses by the emitter self-work, yielding a tighter expression of the second law. We relate this tightening to the extra-knowledge about the field state, as compared to open system frameworks. This new ACM can be extended to study the impact of correlations on various quantum open systems. It deepens the current understanding of quantum thermodynamics, energy management at quantum scales and can be probed in state-of-the-art quantum hardware, such as superconducting and photonic circuits.
Related papers
- Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Correlated noise enhances coherence and fidelity in coupled qubits [5.787049285733455]
Noise correlation can enhance the fidelity and purity of a maximally entangled (Bell) state.
These observations may be useful in the design of high-fidelity quantum gates and communication protocols.
arXiv Detail & Related papers (2023-08-01T21:13:35Z) - Partition of kinetic energy and magnetic moment in dissipative
diamagnetism [20.218184785285132]
We analyze dissipative diamagnetism, arising due to dissipative cyclotron motion in two dimensions, in the light of the quantum counterpart of energy equipartition theorem.
The expressions for kinetic energy and magnetic moment are reformulated in the context of superstatistics.
arXiv Detail & Related papers (2022-07-30T08:07:28Z) - Multipartite correlations in quantum collision models [0.0]
A challenge in the standard collision model is how to describe quantum correlations among ancillas induced by successive system-ancilla interactions.
Here we develop a tensor network formalism to address both challenges.
In the case of the initially correlated ancillas, we construct a general tensor diagram for the system dynamics and derive a memory- kernel master equation.
arXiv Detail & Related papers (2022-04-05T17:06:27Z) - Breakdown of quantum-classical correspondence and dynamical generation
of entanglement [6.167267225728292]
We study the generation of quantum entanglement induced by an ideal Fermi gas confined in a chaotic cavity.
We find that the breakdown of the quantum-classical correspondence of particle motion, via dramatically changing the spatial structure of many-body wavefunction, leads to profound changes of the entanglement structure.
arXiv Detail & Related papers (2021-04-14T03:09:24Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Effect of inter-system coupling on heat transport in a microscopic
collision model [21.9802187221101]
We consider a bipartite system composed of two subsystems each coupled to its own thermal environment.
We mainly study whether the approximation (i.e., the inter-system interaction is ignored when modeling the system-environment coupling) is valid or not.
arXiv Detail & Related papers (2020-12-23T09:34:50Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Neutrino Decoherence in Simple Open Quantum Systems [4.375669765443605]
Neutrinos lose coherence as they propagate, which leads to the fading away of oscillations.
We model neutrino decoherence induced in open quantum systems from their interaction with the environment.
arXiv Detail & Related papers (2020-09-28T16:52:58Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Thermodynamics of Optical Bloch Equations [0.0]
We study the coherent exchange of energy between a quantum bit (qubit) and a quasi-resonant driving field in the presence of a thermal bath.
We coarse-grain the obtained expressions, using a methodology similar to the derivation of the dynamical master equation.
Our findings can be readily extended to larger open quantum systems.
arXiv Detail & Related papers (2020-01-22T14:37:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.