Coherent control of levitated nanoparticles via dipole-dipole interaction
- URL: http://arxiv.org/abs/2404.09651v1
- Date: Mon, 15 Apr 2024 10:33:35 GMT
- Title: Coherent control of levitated nanoparticles via dipole-dipole interaction
- Authors: Sandeep Sharma, Seongi Hong, Andrey S. Moskalenko,
- Abstract summary: We create and transfer thermal squeezed states and random-phase coherent states in a system of two interacting levitated nanoparticles.
Our results may have potential applications in quantum information processing, quantum metrology, and in exploring many-body physics under a controlled environment.
- Score: 2.058673763571808
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a scheme to create and transfer thermal squeezed states and random-phase coherent states in a system of two interacting levitated nanoparticles. In this coupled levitated system, we create a thermal squeezed state of motion in one of the nanoparticles by parametrically driving it and then transferring the state to the other nanoparticle with high fidelity. The transfer mechanism is based on inducing a non-reciprocal type of coupling in the system by suitably modulating the phases of the trapping lasers and the inter-particle distance between the levitated nanoparticles. This non-reciprocal coupling creates a unidirectional channel where information flows from one nanoparticle to the other nanoparticle but not vice versa, thereby allowing for transfer of mechanical states between the nanoparticles with high fidelity. We also affirm this transfer mechanism by creating and efficiently transferring a random-phase coherent state in the coupled levitated system. Further, we make use of the feedback nonlinearity and parametric driving to create simultaneous bistability in the coupled levitated system. Our results may have potential applications in quantum information processing, quantum metrology, and in exploring many-body physics under a controlled environment.
Related papers
- Non-Hermitian dynamics and nonreciprocity of optically coupled
nanoparticles [0.0]
We use this tunability to investigate the collective non-Hermitian dynamics of two nonreciprocally and nonlinearly interacting nanoparticles.
This work opens up a research avenue of nonequilibrium multi-particle collective effects, tailored by the dynamic control of individual sites in a tweezer array.
arXiv Detail & Related papers (2023-10-04T06:50:28Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Force-Gradient Sensing and Entanglement via Feedback Cooling of
Interacting Nanoparticles [0.0]
We show that feedback-cooling of two levitated, interacting nanoparticles enables differential sensing of forces and the observation of stationary entanglement.
We predict that force-gradient sensing at the zepto-Newton per micron range is feasible and that entanglement due to the Coulomb interaction between charged particles can be realistically observed in state-of-the-art setups.
arXiv Detail & Related papers (2022-04-28T17:48:53Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Steady motional entanglement between two distant levitated nanoparticles [0.6091702876917279]
We consider two distant nanoparticles, both of which are optically trapped in two cavities.
Based on the coherent scattering mechanism, we find that the ultrastrong optomechanical coupling between the cavity modes and the motion of the levitated nanoparticles could achieve.
The large and steady entanglement between the filtered output cavity modes and the motion of nanosparticles can be generated, if the trapping laser is under the red sideband.
arXiv Detail & Related papers (2021-11-23T02:43:18Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Stationary Gaussian Entanglement between Levitated Nanoparticles [0.0]
Coherent scattering of photons is a novel mechanism of optomechanical coupling for optically levitated nanoparticles.
We show that it allows efficient deterministic generation of Gaussian entanglement between two particles in separate tweezers.
arXiv Detail & Related papers (2020-06-05T09:55:10Z) - Quantum electromechanics with levitated nanoparticles [0.0]
In contrast to atomic systems with discrete transitions, nanoparticles exhibit a practically continuous absorption spectrum.
We propose a pulsed scheme for the generation and read-out of motional quantum superpositions and entanglement between several levitated nanoparticles.
arXiv Detail & Related papers (2020-05-28T13:52:42Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.