Non-Hermitian dynamics and nonreciprocity of optically coupled
nanoparticles
- URL: http://arxiv.org/abs/2310.02610v2
- Date: Mon, 30 Oct 2023 20:30:32 GMT
- Title: Non-Hermitian dynamics and nonreciprocity of optically coupled
nanoparticles
- Authors: Manuel Reisenbauer, Henning Rudolph, Livia Egyed, Klaus Hornberger,
Anton V. Zasedatelev, Murad Abuzarli, Benjamin A. Stickler, Uro\v{s} Deli\'c
- Abstract summary: We use this tunability to investigate the collective non-Hermitian dynamics of two nonreciprocally and nonlinearly interacting nanoparticles.
This work opens up a research avenue of nonequilibrium multi-particle collective effects, tailored by the dynamic control of individual sites in a tweezer array.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-Hermitian dynamics, as observed in photonic, atomic, electrical, and
optomechanical platforms, holds great potential for sensing applications and
signal processing. Recently, fully tunable nonreciprocal optical interaction
has been demonstrated between levitated nanoparticles. Here, we use this
tunability to investigate the collective non-Hermitian dynamics of two
nonreciprocally and nonlinearly interacting nanoparticles. We observe
parity-time symmetry breaking and, for sufficiently strong coupling, a
collective mechanical lasing transition, where the particles move along stable
limit cycles. This work opens up a research avenue of nonequilibrium
multi-particle collective effects, tailored by the dynamic control of
individual sites in a tweezer array.
Related papers
- Coupler enabled tunable dipole-dipole coupling between optically levitated nanoparticles [16.27312133509692]
We introduce a third nanoparticles as a coupler to two initially non-interacting nanoparticles, achieving tunable dipole-dipole coupling mediated by the third one.
Our method allows for precise control of interactions between any pair of adjacent particles in multi-particle systems.
arXiv Detail & Related papers (2024-08-12T16:11:49Z) - Coherent control of levitated nanoparticles via dipole-dipole interaction [2.058673763571808]
We create and transfer thermal squeezed states and random-phase coherent states in a system of two interacting levitated nanoparticles.
Our results may have potential applications in quantum information processing, quantum metrology, and in exploring many-body physics under a controlled environment.
arXiv Detail & Related papers (2024-04-15T10:33:35Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Observation of strong and tunable light-induced dipole-dipole
interactions between optically levitated nanoparticles [0.0]
We show a new coupling mechanism that is orders of magnitude stronger and has new qualitative features.
Our results pave the way for a fully programmable many-body system of interacting nanoparticles with tunable dissipative and nonreciprocal interactions.
arXiv Detail & Related papers (2022-03-08T16:53:21Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Stationary Gaussian Entanglement between Levitated Nanoparticles [0.0]
Coherent scattering of photons is a novel mechanism of optomechanical coupling for optically levitated nanoparticles.
We show that it allows efficient deterministic generation of Gaussian entanglement between two particles in separate tweezers.
arXiv Detail & Related papers (2020-06-05T09:55:10Z) - Coherent dynamics in a dual-coupling spin-boson model [0.0]
We study the dynamics of a particle tunneling between the ground states of a symmetric double potential well system.
We show how the presence of a non-diagonal coupling mechanism significantly alters the dynamics of the tunneling particle.
arXiv Detail & Related papers (2020-04-19T22:14:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.