論文の概要: Scenario-Adaptive Fine-Grained Personalization Network: Tailoring User Behavior Representation to the Scenario Context
- arxiv url: http://arxiv.org/abs/2404.09709v3
- Date: Tue, 30 Apr 2024 01:48:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 13:06:54.060087
- Title: Scenario-Adaptive Fine-Grained Personalization Network: Tailoring User Behavior Representation to the Scenario Context
- Title(参考訳): シナリオ適応型微粒化パーソナライズネットワーク:シナリオコンテキストへのユーザ行動表現の調整
- Authors: Moyu Zhang, Yongxiang Tang, Jinxin Hu, Yu Zhang,
- Abstract要約: 我々はSFPNet(Scenario-Adaptive Fine-Grained Personalization Network)というランキングフレームワークを開発した。
SFPNetは、マルチシナリオパーソナライズされたレコメンデーションのための、ある種のきめ細かいメソッドを設計する。
- 参考スコア(独自算出の注目度): 3.7566162903515115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing methods often adjust representations adaptively only after aggregating user behavior sequences. This coarse-grained approach to re-weighting the entire user sequence hampers the model's ability to accurately model the user interest migration across different scenarios. To enhance the model's capacity to capture user interests from historical behavior sequences in each scenario, we develop a ranking framework named the Scenario-Adaptive Fine-Grained Personalization Network (SFPNet), which designs a kind of fine-grained method for multi-scenario personalized recommendations. Specifically, SFPNet comprises a series of blocks named as Scenario-Tailoring Block, stacked sequentially. Each block initially deploys a parameter personalization unit to integrate scenario information at a coarse-grained level by redefining fundamental features. Subsequently, we consolidate scenario-adaptively adjusted feature representations to serve as context information. By employing residual connection, we incorporate this context into the representation of each historical behavior, allowing for context-aware fine-grained customization of the behavior representations at the scenario-level, which in turn supports scenario-aware user interest modeling.
- Abstract(参考訳): 既存の方法は、ユーザ行動シーケンスを集約した後のみ、適応的に表現を調整することが多い。
ユーザシーケンス全体を再重み付けするこの粗いアプローチは、さまざまなシナリオにわたるユーザ関心のマイグレーションを正確にモデル化するモデルの能力を損なう。
シナリオごとの履歴行動系列からユーザの興味を捉える能力を高めるため,シナリオ適応ファイングラインドパーソナライゼーションネットワーク (SFPNet) と呼ばれるランキングフレームワークを開発し,マルチシナリオパーソナライズされたレコメンデーションのための,ある種のきめ細かい手法を設計する。
具体的には、SFPNetはScenario-Tailoring Blockという名前の一連のブロックを順次積み重ねて構成する。
各ブロックは、まずパラメータパーソナライズユニットをデプロイし、基本的な特徴を再定義することで、粗い粒度レベルでシナリオ情報を統合する。
その後、シナリオ適応型特徴表現を統合化し、コンテキスト情報として機能させる。
残余接続を用いることで、このコンテキストを各履歴行動の表現に組み込むことで、シナリオレベルでの振る舞い表現のきめ細かいカスタマイズを可能にし、シナリオ対応のユーザ関心モデリングをサポートする。
関連論文リスト
- UMSE: Unified Multi-scenario Summarization Evaluation [52.60867881867428]
要約品質評価は、テキスト要約における非自明なタスクである。
統一多シナリオ要約評価モデル(UMSE)を提案する。
UMSEは3つの評価シナリオで使用できる能力に係わる最初の統合要約評価フレームワークである。
論文 参考訳(メタデータ) (2023-05-26T12:54:44Z) - SMAP: A Novel Heterogeneous Information Framework for Scenario-based
Optimal Model Assignment [5.834783927354705]
Scenario and Model Associative Percepts (SMAP)と呼ばれる新しいフレームワークを開発した。
SMAPは、様々な種類の情報を統合して、適切なデータセットをインテリジェントに選択し、特定のシナリオに対して最適なモデルを割り当てる。
一致した異種情報を記憶し、重複を防止すべく、モニーモニックセンターという新しい記憶機構を開発する。
論文 参考訳(メタデータ) (2023-05-23T03:01:26Z) - Application-Driven AI Paradigm for Person Counting in Various Scenarios [2.2881898195409884]
そこで本研究では,シナリオ分類器を用いて,撮影フレーム毎に適切な人物カウントモデルを自動的に選択する手法を提案する。
私たちは、サイドビュー、ロングショット、トップビュー、カスタマイズされた、そして群衆を含む、さまざまなシナリオから収集された5つの拡張データセットを提示します。
論文 参考訳(メタデータ) (2023-03-24T03:57:21Z) - Scenario-Adaptive and Self-Supervised Model for Multi-Scenario
Personalized Recommendation [35.4495536683099]
シナリオ適応型自己監督型(SASS)モデルを提案し,上記の3つの課題を解決する。
このモデルは、ユーザ側とアイテム側の両方で対称に生成され、異なるシナリオにおけるアイテムの表現を区別することができる。
このモデルは、オンラインA/Bテストにおける平均視聴時間に対して8.0%以上の改善も達成している。
論文 参考訳(メタデータ) (2022-08-24T11:44:00Z) - PinnerFormer: Sequence Modeling for User Representation at Pinterest [60.335384724891746]
我々は、ユーザの将来的なエンゲージメントを予測するためにトレーニングされたユーザ表現であるPinnerFormerを紹介する。
従来のアプローチとは異なり、新しい密集した全アクション損失を通じて、モデリングをバッチインフラストラクチャに適応させます。
その結果,1日に1回発生するバッチユーザ埋め込みと,ユーザがアクションを行うたびに発生するリアルタイムユーザ埋め込みとの間には,大きなギャップがあることが判明した。
論文 参考訳(メタデータ) (2022-05-09T18:26:51Z) - Modeling Dynamic User Preference via Dictionary Learning for Sequential
Recommendation [133.8758914874593]
ユーザの好みのダイナミックさを捉えることは、ユーザの将来の行動を予測する上で非常に重要です。
浅いものも深いものも含む、既存のレコメンデーションアルゴリズムの多くは、このようなダイナミクスを独立してモデル化することが多い。
本稿では、ユーザのシーケンシャルな振る舞いを、ユーザ好みの潜伏した空間に埋め込むことの問題について考察する。
論文 参考訳(メタデータ) (2022-04-02T03:23:46Z) - Retrieve-and-Fill for Scenario-based Task-Oriented Semantic Parsing [110.4684789199555]
シナリオベースのセマンティックパーシングを導入し、最初に発話の「scenario」を曖昧にする必要がある元のタスクの変種を紹介します。
この定式化により、タスクの粗くきめ細かな側面を分離することが可能となり、それぞれがオフザシェルフニューラルネットワークモジュールで解決される。
私たちのモデルはモジュール化され、差別化可能で、解釈可能で、シナリオから余分な監督を得られるようになります。
論文 参考訳(メタデータ) (2022-02-02T08:00:21Z) - TEA: A Sequential Recommendation Framework via Temporally Evolving
Aggregations [12.626079984394766]
動的ユーザ・イテム不均質グラフに基づく新しいシーケンシャル・レコメンデーション・フレームワークを提案する。
条件付き乱数場を利用して不均一なグラフとユーザ動作を集約し,確率推定を行う。
提案したフレームワークのスケーラブルで柔軟な実装を提供しています。
論文 参考訳(メタデータ) (2021-11-14T15:54:23Z) - Sequence Adaptation via Reinforcement Learning in Recommender Systems [8.909115457491522]
そこで我々は,SARモデルを提案する。SARモデルは,ユーザとイテムの相互作用のシーケンス長をパーソナライズされた方法で調整する。
さらに,逐次レコメンデーションの精度を批評家ネットワークの予測累積報酬と整合させるために,共同損失関数を最適化する。
実世界の4つのデータセットに対する実験的な評価は,提案モデルがいくつかのベースラインアプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-31T13:56:46Z) - Set Based Stochastic Subsampling [85.5331107565578]
本稿では,2段階間ニューラルサブサンプリングモデルを提案する。
画像分類,画像再構成,機能再構築,少数ショット分類など,様々なタスクにおいて,低いサブサンプリング率で関連ベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2020-06-25T07:36:47Z) - Unsupervised Model Personalization while Preserving Privacy and
Scalability: An Open Problem [55.21502268698577]
本研究では,非教師なしモデルパーソナライゼーションの課題について検討する。
この問題を探求するための新しいDual User-Adaptation Framework(DUA)を提供する。
このフレームワークは、サーバ上のモデルパーソナライズとユーザデバイス上のローカルデータ正規化に柔軟にユーザ適応を分散させる。
論文 参考訳(メタデータ) (2020-03-30T09:35:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。