論文の概要: Amplitude-Phase Fusion for Enhanced Electrocardiogram Morphological Analysis
- arxiv url: http://arxiv.org/abs/2404.09729v1
- Date: Mon, 15 Apr 2024 12:29:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 13:38:59.006502
- Title: Amplitude-Phase Fusion for Enhanced Electrocardiogram Morphological Analysis
- Title(参考訳): 心電図形態解析における振幅-位相融合法の有用性
- Authors: Shuaicong Hu, Yanan Wang, Jian Liu, Jingyu Lin, Shengmei Qin, Zhenning Nie, Zhifeng Yao, Wenjie Cai, Cuiwei Yang,
- Abstract要約: 本稿では,新しい融合エントロピー計量であるモルフォロジーECGエントロピー(EE)を初めて提案する。
EEは異常心電図不整脈領域の迅速かつ正確かつラベルフリーな局在を実現する。
EEは品質の悪い領域を記述する能力を示す。
- 参考スコア(独自算出の注目度): 5.829027334954726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Considering the variability of amplitude and phase patterns in electrocardiogram (ECG) signals due to cardiac activity and individual differences, existing entropy-based studies have not fully utilized these two patterns and lack integration. To address this gap, this paper proposes a novel fusion entropy metric, morphological ECG entropy (MEE) for the first time, specifically designed for ECG morphology, to comprehensively describe the fusion of amplitude and phase patterns. MEE is computed based on beat-level samples, enabling detailed analysis of each cardiac cycle. Experimental results demonstrate that MEE achieves rapid, accurate, and label-free localization of abnormal ECG arrhythmia regions. Furthermore, MEE provides a method for assessing sample diversity, facilitating compression of imbalanced training sets (via representative sample selection), and outperforms random pruning. Additionally, MEE exhibits the ability to describe areas of poor quality. By discussing, it proves the robustness of MEE value calculation to noise interference and its low computational complexity. Finally, we integrate this method into a clinical interactive interface to provide a more convenient and intuitive user experience. These findings indicate that MEE serves as a valuable clinical descriptor for ECG characterization. The implementation code can be referenced at the following link: https://github.com/fdu-harry/ECG-MEE-metric.
- Abstract(参考訳): 心活動と個人差による心電図信号の振幅および位相パターンの変動を考慮すると、既存のエントロピーに基づく研究はこれらの2つのパターンを十分に活用せず、統合が欠如している。
このギャップに対処するために,新しい融合エントロピー計量,形態ECGエントロピー(MEE)を提案し,振幅と位相パターンの融合を包括的に記述する。
MEEはビートレベルサンプルに基づいて計算され、各心循環の詳細な解析を可能にする。
実験の結果, MEEは異常心電図不整脈領域の迅速, 正確, ラベルフリーな局在を達成できた。
さらに、MEEは、サンプルの多様性を評価する方法を提供し、(代表的なサンプル選択を通じて)不均衡なトレーニングセットの圧縮を容易にし、ランダムプルーニングより優れています。
さらに、MEEは品質の悪い領域を記述する能力を示している。
議論することで、ノイズ干渉に対するMEE値計算の堅牢性とその計算複雑性を証明できる。
最後に,本手法を臨床対話インタフェースに統合し,より便利で直感的なユーザエクスペリエンスを実現する。
以上の結果から,MEEは心電図評価に有用な臨床記述因子として有用であることが示唆された。
実装コードは https://github.com/fdu-harry/ECG-MEE-metric というリンクで参照できる。
関連論文リスト
- rECGnition_v1.0: Arrhythmia detection using cardiologist-inspired multi-modal architecture incorporating demographic attributes in ECG [3.0473237906125954]
本稿では,心電図解析と不整脈分類のための新しいマルチモーダル手法を提案する。
提案したrECGnition_v1.0アルゴリズムはクリニックへの展開の道を開く。
論文 参考訳(メタデータ) (2024-10-09T11:17:02Z) - ECG Semantic Integrator (ESI): A Foundation ECG Model Pretrained with LLM-Enhanced Cardiological Text [14.06147507373525]
本研究は,12誘導ECG信号の学習表現の品質とロバスト性の向上を目的とした,新しいマルチモーダルコントラスト保持フレームワークを提案する。
私たちのフレームワークは、Cardio Query Assistant(CQA)とECG Semantics Integrator(ESI)の2つの重要なコンポーネントで構成されています。
論文 参考訳(メタデータ) (2024-05-26T06:45:39Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
心電図(Electrocardiogram、ECG)は、心臓の状態をモニタリングするための主要な非侵襲的診断ツールである。
最近の研究は心電図データを用いた心臓状態の分類に集中しているが、心電図レポートの生成は見落としている。
LLMとマルチモーダル命令を用いてECGレポート生成に取り組む最初の試みであるMultimodal ECG Instruction Tuning (MEIT) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T23:20:56Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - Two-stream Network for ECG Signal Classification [3.222802562733787]
本稿では,心電図に基づく心拍数型の自動分類アルゴリズムを提案する。
本稿では,2ストリームアーキテクチャを用いて,これに基づくECG認識の強化版を提案する。
MIT-BIH Arrhythmia Databaseの結果、提案アルゴリズムは99.38%の精度で実行されている。
論文 参考訳(メタデータ) (2022-10-05T08:14:51Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - ECG Heartbeat Classification Using Multimodal Fusion [13.524306011331303]
本稿では,心電図の心拍数分類のための2つの計算効率の良いマルチモーダル融合フレームワークを提案する。
MFFでは,CNNの垂直層から特徴を抽出し,それらを融合させてユニークかつ相互依存的な情報を得た。
不整脈では99.7%,MIでは99.2%の分類が得られた。
論文 参考訳(メタデータ) (2021-07-21T03:48:35Z) - Representing and Denoising Wearable ECG Recordings [12.378631176671773]
ウェアラブルセンサから得られるECGの構造的ノイズ過程をシミュレートする統計モデルを構築した。
変動解析のためのビート・ツー・ビート表現を設計し,心電図を識別する因子分析に基づく手法を提案する。
論文 参考訳(メタデータ) (2020-11-30T21:33:11Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
我々は,心電図の診断を分類するために,形態や信号処理機能に適合した勾配強化木のアンサンブルを用いたアルゴリズムを構築した。
各リードについて、心拍変動、PQRSTテンプレート形状、全信号波形から特徴を導出する。
各クラスに属するECGインスタンスの確率を予測するため、全12項目の特徴と合わせて、勾配を増す決定ツリーの集合に適合する。
論文 参考訳(メタデータ) (2020-10-21T18:11:36Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
非生理的表現と生理的特徴を混同するための横断的特徴分離戦略を提案する。
次に, 蒸留された生理特性を用いて, 頑健なマルチタスク生理測定を行った。
歪んだ特徴は、最終的に平均HR値やr信号のような複数の生理的信号の合同予測に使用される。
論文 参考訳(メタデータ) (2020-07-16T09:39:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。