論文の概要: rECGnition_v1.0: Arrhythmia detection using cardiologist-inspired multi-modal architecture incorporating demographic attributes in ECG
- arxiv url: http://arxiv.org/abs/2410.18985v1
- Date: Wed, 09 Oct 2024 11:17:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-03 08:52:27.725431
- Title: rECGnition_v1.0: Arrhythmia detection using cardiologist-inspired multi-modal architecture incorporating demographic attributes in ECG
- Title(参考訳): rECGnition_v1.0:心電図に人口特性を取り入れた心電図型マルチモーダルアーキテクチャを用いた不整脈検出
- Authors: Shreya Srivastava, Durgesh Kumar, Jatin Bedi, Sandeep Seth, Deepak Sharma,
- Abstract要約: 本稿では,心電図解析と不整脈分類のための新しいマルチモーダル手法を提案する。
提案したrECGnition_v1.0アルゴリズムはクリニックへの展開の道を開く。
- 参考スコア(独自算出の注目度): 3.0473237906125954
- License:
- Abstract: A substantial amount of variability in ECG manifested due to patient characteristics hinders the adoption of automated analysis algorithms in clinical practice. None of the ECG annotators developed till date consider the characteristics of the patients in a multi-modal architecture. We employed the XGBoost model to analyze the UCI Arrhythmia dataset, linking patient characteristics to ECG morphological changes. The model accurately classified patient gender using discriminative ECG features with 87.75% confidence. We propose a novel multi-modal methodology for ECG analysis and arrhythmia classification that can help defy the variability in ECG related to patient-specific conditions. This deep learning algorithm, named rECGnition_v1.0 (robust ECG abnormality detection Version 1), fuses Beat Morphology with Patient Characteristics to create a discriminative feature map that understands the internal correlation between both modalities. A Squeeze and Excitation based Patient characteristic Encoding Network (SEPcEnet) has been introduced, considering the patient's demographics. The trained model outperformed the various existing algorithms by achieving the overall F1-score of 0.986 for the ten arrhythmia class classification in the MITDB and achieved near perfect prediction scores of ~0.99 for LBBB, RBBB, Premature ventricular contraction beat, Atrial premature beat and Paced beat. Subsequently, the methodology was validated across INCARTDB, EDB and different class groups of MITDB using transfer learning. The generalizability test provided F1-scores of 0.980, 0.946, 0.977, and 0.980 for INCARTDB, EDB, MITDB AAMI, and MITDB Normal vs. Abnormal Classification, respectively. Therefore, with a more enhanced and comprehensive understanding of the patient being examined and their ECG for diverse CVD manifestations, the proposed rECGnition_v1.0 algorithm paves the way for its deployment in clinics.
- Abstract(参考訳): 患者の特徴による心電図の変動は, 臨床における自動解析アルゴリズムの採用を妨げる。
これまでに開発されたECGアノテータはいずれもマルチモーダルアーキテクチャの患者の特徴を考慮していない。
我々はXGBoostモデルを用いてUCI不整脈データセットを解析し,患者の特徴と心電図形態変化を関連づけた。
このモデルは、87.75%の信頼性を持つ差別的心電図の特徴を用いて、患者の性別を正確に分類した。
本稿では,心電図解析と不整脈分類のための新しいマルチモーダル手法を提案する。
この深層学習アルゴリズムは、rECGnition_v1.0 (robust ECG abnormality Detection Version 1) と名付けられ、患者特性とビート形態を融合させ、両方のモード間の内部相関を理解する識別的特徴マップを作成する。
SEPcEnet (Squeeze and Excitation based patient characteristic Encoding Network) が導入された。
トレーニングされたモデルは、MITDBの10の不整脈分類で0.986のF1スコアを達成し、LBBB、RBBB、未熟心室収縮ビート、心房不整脈、ペーストビートで約0.99の予測スコアを得た。
その後、移動学習を用いて、INCARTDB、EDBおよびMITDBの異なるクラスグループ間で方法論が検証された。
一般化性テストでは、それぞれINCARTDB、EDB、MITDB AAMI、MITDB Normal vs. Abnormal Classification用の0.980、0.946、0.977、0.980のF1スコアが提供されている。
したがって、検査対象の患者に対するより高度かつ包括的な理解と多様なCVD発現のためのECGにより、提案したrECGnition_v1.0アルゴリズムは、クリニックへの展開の道筋をたどる。
関連論文リスト
- EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
犬心電図(ECG)の評価には熟練した獣医が必要である。
心電図の解釈と診断支援のための獣医師の現在の利用状況は限られている。
犬の心電図配列を正常または異常と分類するためのディープ畳み込みニューラルネットワーク(CNN)アプローチを実装した。
論文 参考訳(メタデータ) (2023-05-17T09:06:39Z) - Deep learning based ECG segmentation for delineation of diverse arrhythmias [0.0]
多様な不整脈に着目した心電図記述のためのU-Netライクセグメンテーションモデルを提案する。
これに続いて後処理アルゴリズムがノイズを除去し、P、QRS、T波の境界を自動的に決定する。
F1スコアはQRSおよびT波の99%,LUDBデータセットのP波の97%以上である。
論文 参考訳(メタデータ) (2023-04-13T03:20:45Z) - Two-stream Network for ECG Signal Classification [3.222802562733787]
本稿では,心電図に基づく心拍数型の自動分類アルゴリズムを提案する。
本稿では,2ストリームアーキテクチャを用いて,これに基づくECG認識の強化版を提案する。
MIT-BIH Arrhythmia Databaseの結果、提案アルゴリズムは99.38%の精度で実行されている。
論文 参考訳(メタデータ) (2022-10-05T08:14:51Z) - Global ECG Classification by Self-Operational Neural Networks with
Feature Injection [25.15075119957447]
コンパクトな1次元自己組織化オペレーショナルニューラルネットワーク(Self-ONN)を用いた患者間心電図分類のための新しいアプローチを提案する。
我々は1D Self-ONN層を用いてECGデータから形態表現を自動的に学習し、Rピーク付近のECG波形の形状を捉えることができた。
提案手法は,MIT-BIH ベンチマークデータベースを用いて,これまでで最高の分類性能を達成している。
論文 参考訳(メタデータ) (2022-04-07T22:49:18Z) - IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG
Classification [0.9449650062296824]
臨床環境では、心臓科医が標準12チャンネル心電図記録に基づいて診断を行う。
本稿では,標準ECG記録で利用可能なマルチチャネル情報を活用し,ビート,リズム,チャネルレベルのパターンを学習するモデルを提案する。
実験結果から,マクロ平均ROC-AUCスコアは0.9216,平均精度は88.85%,最大F1スコアは0.8057であった。
論文 参考訳(メタデータ) (2022-04-06T16:29:10Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - Estimation of atrial fibrillation from lead-I ECGs: Comparison with
cardiologists and machine learning model (CurAlive), a clinical validation
study [0.0]
本研究では,人工知能を用いた心房細動検出法を提案する。
本研究の目的は, 心臓科医と人工知能の診断精度をリードI心電図と比較することである。
論文 参考訳(メタデータ) (2021-04-15T12:50:16Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
我々は,心電図の診断を分類するために,形態や信号処理機能に適合した勾配強化木のアンサンブルを用いたアルゴリズムを構築した。
各リードについて、心拍変動、PQRSTテンプレート形状、全信号波形から特徴を導出する。
各クラスに属するECGインスタンスの確率を予測するため、全12項目の特徴と合わせて、勾配を増す決定ツリーの集合に適合する。
論文 参考訳(メタデータ) (2020-10-21T18:11:36Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。