論文の概要: Equipping Diffusion Models with Differentiable Spatial Entropy for Low-Light Image Enhancement
- arxiv url: http://arxiv.org/abs/2404.09735v1
- Date: Mon, 15 Apr 2024 12:35:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 12:30:43.240999
- Title: Equipping Diffusion Models with Differentiable Spatial Entropy for Low-Light Image Enhancement
- Title(参考訳): 空間エントロピーの異なる拡散モデルによる低照度画像強調
- Authors: Wenyi Lian, Wenjing Lian, Ziwei Luo,
- Abstract要約: 本研究では,決定論的画素間比較から統計的視点へ焦点を移す新しい手法を提案する。
中心となる考え方は、損失関数に空間エントロピーを導入して、予測と目標の分布差を測定することである。
具体的には,拡散モデルにエントロピーを装備し,L1ベースノイズマッチング損失よりも高精度で知覚品質の向上を図っている。
- 参考スコア(独自算出の注目度): 7.302792947244082
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image restoration, which aims to recover high-quality images from their corrupted counterparts, often faces the challenge of being an ill-posed problem that allows multiple solutions for a single input. However, most deep learning based works simply employ l1 loss to train their network in a deterministic way, resulting in over-smoothed predictions with inferior perceptual quality. In this work, we propose a novel method that shifts the focus from a deterministic pixel-by-pixel comparison to a statistical perspective, emphasizing the learning of distributions rather than individual pixel values. The core idea is to introduce spatial entropy into the loss function to measure the distribution difference between predictions and targets. To make this spatial entropy differentiable, we employ kernel density estimation (KDE) to approximate the probabilities for specific intensity values of each pixel with their neighbor areas. Specifically, we equip the entropy with diffusion models and aim for superior accuracy and enhanced perceptual quality over l1 based noise matching loss. In the experiments, we evaluate the proposed method for low light enhancement on two datasets and the NTIRE challenge 2024. All these results illustrate the effectiveness of our statistic-based entropy loss. Code is available at https://github.com/shermanlian/spatial-entropy-loss.
- Abstract(参考訳): 画像復元は、劣化した画像から高品質な画像を復元することを目的としており、多くの場合、1つの入力に対して複数のソリューションを可能にする不適切な問題である、という課題に直面している。
しかし、ディープラーニングに基づくほとんどの研究は、単にl1損失を利用してネットワークを決定論的に訓練し、結果として知覚品質が劣る過度に滑らかな予測をもたらす。
本研究では,個々の画素値ではなく分布の学習を重視し,決定論的画素比較から統計的視点へ焦点を移す新しい手法を提案する。
中心となる考え方は、損失関数に空間エントロピーを導入して、予測と目標の分布差を測定することである。
この空間エントロピーを微分可能にするため、各画素の特定の強度値と近傍領域との確率を近似するためにカーネル密度推定(KDE)を用いる。
具体的には,拡散モデルにエントロピーを装備し,L1ベースノイズマッチング損失よりも高精度で知覚品質の向上を図っている。
実験では,2つのデータセットに対する低光強調法とNTIREチャレンジ2024の評価を行った。
これらの結果は、統計に基づくエントロピー損失の有効性を示している。
コードはhttps://github.com/shermanlian/spatial-entropy-lossで公開されている。
関連論文リスト
- Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play Image Reconstruction [31.503662384666274]
科学と工学において、ゴールは、ある画像のモダリティを記述する既知のフォワードモデルから収集された少数の測定値から未知の画像を推測することである。
モチベートされたスコアベース拡散モデルはその経験的成功により、画像再構成に先立って模範の印象的な候補として現れた。
論文 参考訳(メタデータ) (2024-03-25T15:58:26Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - Randomize to Generalize: Domain Randomization for Runway FOD Detection [1.4249472316161877]
細い物体検出は、小型化、低解像度化、オクルージョン化、背景クラッタ、照明条件、被写体対画像比の小さいため困難である。
本稿では,SRIA(Synthetic Image Augmentation)の新たな2段階手法を提案する。
検出精度は初期41%からOODテストセットの92%に改善した。
論文 参考訳(メタデータ) (2023-09-23T05:02:31Z) - Deep Richardson-Lucy Deconvolution for Low-Light Image Deblurring [48.80983873199214]
我々は,飽和画素を学習潜時マップでモデル化するデータ駆動型手法を開発した。
新しいモデルに基づいて、非盲検除色タスクを最大後部(MAP)問題に定式化することができる。
増幅されたアーティファクトを使わずに高品質な劣化画像を推定するために,我々は事前推定ネットワークを構築した。
論文 参考訳(メタデータ) (2023-08-10T12:53:30Z) - Single Image Depth Prediction Made Better: A Multivariate Gaussian Take [163.14849753700682]
本稿では,画素ごとの深度を連続的にモデル化する手法を提案する。
提案手法の精度(MG)は,KITTI深度予測ベンチマークリーダーボードの上位に位置する。
論文 参考訳(メタデータ) (2023-03-31T16:01:03Z) - Image Restoration with Mean-Reverting Stochastic Differential Equations [9.245782611878752]
本稿では,汎用画像復元のための微分方程式(SDE)を提案する。
対応する逆時間SDEをシミュレートすることにより、低画質画像の起源を復元することができる。
実験の結果,提案手法は画像の劣化, 劣化, 騒音の定量的比較において, 高い競争性能を示すことがわかった。
論文 参考訳(メタデータ) (2023-01-27T13:20:48Z) - Uncovering the Over-smoothing Challenge in Image Super-Resolution: Entropy-based Quantification and Contrastive Optimization [67.99082021804145]
我々はDetail Enhanced Contrastive Loss (DECLoss)と呼ばれるCOO問題に対する明確な解決策を提案する。
DECLossはコントラスト学習のクラスタリング特性を利用して、潜在的な高分解能分布の分散を直接的に低減する。
我々は複数の超高解像度ベンチマーク上でDECLosを評価し,PSNR指向モデルの知覚品質を向上させることを実証した。
論文 参考訳(メタデータ) (2022-01-04T08:30:09Z) - PixelPyramids: Exact Inference Models from Lossless Image Pyramids [58.949070311990916]
Pixel-Pyramidsは、画像画素の関節分布を符号化するスケール特異的表現を用いたブロック自動回帰手法である。
様々な画像データセット、特に高解像度データに対する密度推定の最先端結果が得られる。
CelebA-HQ 1024 x 1024 では,フローベースモデルの並列化よりもサンプリング速度が優れているにもかかわらず,密度推定値がベースラインの 44% に向上することが観察された。
論文 参考訳(メタデータ) (2021-10-17T10:47:29Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z) - A Loss Function for Generative Neural Networks Based on Watson's
Perceptual Model [14.1081872409308]
変動オートエンコーダ(VAE)を訓練して現実的な画像を生成するには、画像類似性に対する人間の認識を反映する損失関数が必要である。
本稿では,周波数空間における重み付き距離を計算し,輝度とコントラストマスキングを考慮したWatsonの知覚モデルに基づく損失関数を提案する。
実験では、新しい損失関数で訓練されたVAEが、現実的で高品質な画像サンプルを生成した。
論文 参考訳(メタデータ) (2020-06-26T15:36:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。