論文の概要: KG-CTG: Citation Generation through Knowledge Graph-guided Large Language Models
- arxiv url: http://arxiv.org/abs/2404.09763v1
- Date: Mon, 15 Apr 2024 13:06:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 04:29:54.426684
- Title: KG-CTG: Citation Generation through Knowledge Graph-guided Large Language Models
- Title(参考訳): KG-CTG:知識グラフ誘導大言語モデルによる引用生成
- Authors: Avinash Anand, Mohit Gupta, Kritarth Prasad, Ujjwal Goel, Naman Lal, Astha Verma, Rajiv Ratn Shah,
- Abstract要約: Citation Text Generation (CTG) は、自然言語処理(NLP)において、引用された文書を正確に引用または参照することを目的としたタスクである。
本稿では,大規模言語モデル(LLM)を引用生成のタスクに活用するためのフレームワークと比較研究について述べる。
- 参考スコア(独自算出の注目度): 35.80247519023821
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Citation Text Generation (CTG) is a task in natural language processing (NLP) that aims to produce text that accurately cites or references a cited document within a source document. In CTG, the generated text draws upon contextual cues from both the source document and the cited paper, ensuring accurate and relevant citation information is provided. Previous work in the field of citation generation is mainly based on the text summarization of documents. Following this, this paper presents a framework, and a comparative study to demonstrate the use of Large Language Models (LLMs) for the task of citation generation. Also, we have shown the improvement in the results of citation generation by incorporating the knowledge graph relations of the papers in the prompt for the LLM to better learn the relationship between the papers. To assess how well our model is performing, we have used a subset of standard S2ORC dataset, which only consists of computer science academic research papers in the English Language. Vicuna performs best for this task with 14.15 Meteor, 12.88 Rouge-1, 1.52 Rouge-2, and 10.94 Rouge-L. Also, Alpaca performs best, and improves the performance by 36.98% in Rouge-1, and 33.14% in Meteor by including knowledge graphs.
- Abstract(参考訳): Citation Text Generation (CTG) は、自然言語処理(NLP)において、引用された文書を正確に引用または参照するテキストを作成することを目的としたタスクである。
CTGでは、生成されたテキストは、ソース文書と引用紙の両方からコンテキスト手がかりに基づいて描画され、正確で関連する引用情報が確実に提供される。
引用生成の分野におけるこれまでの研究は主に文書のテキスト要約に基づいている。
そこで本論文では,大規模言語モデル (LLM) を引用生成の課題に用いたフレームワークと比較研究について述べる。
また,論文間の関係をよりよく学習するために,論文の知識グラフ関係をLCMに組み込むことにより,引用生成結果の改善を図った。
我々のモデルの性能を評価するために、我々は標準S2ORCデータセットのサブセットを使用しました。
ヴィクナは14.15 Meteor、12.88 Rouge-1、1.22 Rouge-2、10.94 Rouge-Lでこの任務に最適である。
また、Alpaca は最高性能を示し、Ruge-1 では36.98%、Meteor では33.14%の性能を知識グラフで改善している。
関連論文リスト
- HLM-Cite: Hybrid Language Model Workflow for Text-based Scientific Citation Prediction [14.731720495144112]
本稿では,表面的な言及を超越した批判的参照を識別する,コア引用という新しい概念を紹介する。
我々は、引用予測のための$textbfH$ybrid $textbfL$anguage $textbfM$odelワークフローである$textbfHLM-Citeを提案する。
我々はHLM-Citeを19分野にわたって評価し,SOTA法と比較して17.6%の性能向上を示した。
論文 参考訳(メタデータ) (2024-10-10T10:46:06Z) - Verifiable Generation with Subsentence-Level Fine-Grained Citations [13.931548733211436]
検証可能な生成には、出力をサポートするソースドキュメントを引用するために、大きな言語モデルが必要である。
先行研究は主に文レベルの引用の生成を目標としており、引用された情報源によって文のどの部分が裏付けられているかの特異性が欠如している。
本研究は, サブ文レベルのきめ細かな引用による生成を検証し, 引用元が支持する生成コンテンツのより正確な位置について検討する。
論文 参考訳(メタデータ) (2024-06-10T09:32:37Z) - Context-Enhanced Language Models for Generating Multi-Paper Citations [35.80247519023821]
本稿では,Large Language Models (LLMs) を用いて多文文を生成する手法を提案する。
提案手法は,複数文の引用文を含むコヒーレントな段落に終止符を打つ,単一のソース・ペーパーと対象論文の集合を包含する。
論文 参考訳(メタデータ) (2024-04-22T04:30:36Z) - CiteBench: A benchmark for Scientific Citation Text Generation [69.37571393032026]
CiteBenchは引用テキスト生成のベンチマークである。
CiteBenchのコードはhttps://github.com/UKPLab/citebench.comで公開しています。
論文 参考訳(メタデータ) (2022-12-19T16:10:56Z) - Scientific Paper Extractive Summarization Enhanced by Citation Graphs [50.19266650000948]
我々は、引用グラフを活用して、異なる設定下での科学的論文の抽出要約を改善することに重点を置いている。
予備的な結果は、単純な教師なしフレームワークであっても、引用グラフが有用であることを示している。
そこで我々は,大規模ラベル付きデータが利用可能である場合のタスクにおいて,より正確な結果を得るために,グラフベースのスーパービジョン・サムライゼーション・モデル(GSS)を提案する。
論文 参考訳(メタデータ) (2022-12-08T11:53:12Z) - CitationIE: Leveraging the Citation Graph for Scientific Information
Extraction [89.33938657493765]
引用論文と引用論文の参照リンクの引用グラフを使用する。
最先端技術に対するエンド・ツー・エンドの情報抽出の大幅な改善を観察する。
論文 参考訳(メタデータ) (2021-06-03T03:00:12Z) - Enhancing Scientific Papers Summarization with Citation Graph [78.65955304229863]
引用グラフを用いて科学論文の要約作業を再定義します。
我々は,141kの研究論文を異なる領域に格納した,新しい科学論文要約データセットセマンティックスタディネットワーク(ssn)を構築した。
我々のモデルは、事前訓練されたモデルと比較して競争性能を達成することができる。
論文 参考訳(メタデータ) (2021-04-07T11:13:35Z) - SPECTER: Document-level Representation Learning using Citation-informed
Transformers [51.048515757909215]
SPECTERは、Transformer言語モデルの事前学習に基づいて、科学文書の文書レベルの埋め込みを生成する。
SciDocsは、引用予測から文書分類、レコメンデーションまでの7つの文書レベルのタスクからなる新しい評価ベンチマークである。
論文 参考訳(メタデータ) (2020-04-15T16:05:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。