論文の概要: Anatomy of Industrial Scale Multilingual ASR
- arxiv url: http://arxiv.org/abs/2404.09841v2
- Date: Tue, 16 Apr 2024 14:55:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 21:57:24.048943
- Title: Anatomy of Industrial Scale Multilingual ASR
- Title(参考訳): 産業規模多言語ASRの解剖
- Authors: Francis McCann Ramirez, Luka Chkhetiani, Andrew Ehrenberg, Robert McHardy, Rami Botros, Yash Khare, Andrea Vanzo, Taufiquzzaman Peyash, Gabriel Oexle, Michael Liang, Ilya Sklyar, Enver Fakhan, Ahmed Etefy, Daniel McCrystal, Sam Flamini, Domenic Donato, Takuya Yoshioka,
- Abstract要約: 本稿では,アセンブリの産業規模自動音声認識(ASR)システムについて述べる。
本システムは,教師なし(12.5M時間),教師なし(188K時間),疑似ラベル付き(1.6M時間)の4言語を対象とした多様なトレーニングデータセットを活用する。
- 参考スコア(独自算出の注目度): 13.491861238522421
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper describes AssemblyAI's industrial-scale automatic speech recognition (ASR) system, designed to meet the requirements of large-scale, multilingual ASR serving various application needs. Our system leverages a diverse training dataset comprising unsupervised (12.5M hours), supervised (188k hours), and pseudo-labeled (1.6M hours) data across four languages. We provide a detailed description of our model architecture, consisting of a full-context 600M-parameter Conformer encoder pre-trained with BEST-RQ and an RNN-T decoder fine-tuned jointly with the encoder. Our extensive evaluation demonstrates competitive word error rates (WERs) against larger and more computationally expensive models, such as Whisper large and Canary-1B. Furthermore, our architectural choices yield several key advantages, including an improved code-switching capability, a 5x inference speedup compared to an optimized Whisper baseline, a 30% reduction in hallucination rate on speech data, and a 90% reduction in ambient noise compared to Whisper, along with significantly improved time-stamp accuracy. Throughout this work, we adopt a system-centric approach to analyzing various aspects of fully-fledged ASR models to gain practically relevant insights useful for real-world services operating at scale.
- Abstract(参考訳): 本稿では,産業用自動音声認識(ASR)システムについて述べる。
本システムは、教師なし(12.5M時間)、教師なし(188K時間)、擬似ラベル付き(1.6M時間)の4言語からなる多様なトレーニングデータセットを活用する。
我々は,BEST-RQで事前訓練したフルコンテキスト600Mパラメータ・コンバータ・エンコーダと,エンコーダとともに微調整されたRNN-Tデコーダとからなるモデルアーキテクチャについて詳細に記述する。
本稿では,Whisper large や Canary-1B などの大規模で計算コストの高いモデルに対して,競合語誤り率 (WER) を示す。
さらに、コードスイッチ機能の改善、最適化されたWhisperベースラインに対する5倍の推論高速化、音声データに対する幻覚率の30%の低減、Whisperに対する環境雑音の90%の低減、時間スタンプ精度の向上など、アーキテクチャ上の選択にはいくつかの大きなメリットがある。
本研究を通じて,システム中心のアプローチを用いて,本格的なASRモデルの様々な側面を解析し,大規模に運用されている現実世界のサービスに有用な実用的な知見を得る。
関連論文リスト
- Codec-ASR: Training Performant Automatic Speech Recognition Systems with Discrete Speech Representations [16.577870835480585]
本稿では、離散符号を用いたASRシステム構築に関する総合的な分析を行う。
本稿では,量子化スキームや時間領域,スペクトル特徴符号化などの異なる手法について検討する。
同様のビットレートでEncodecを上回るパイプラインを導入する。
論文 参考訳(メタデータ) (2024-07-03T20:51:41Z) - Exploring the limits of decoder-only models trained on public speech
recognition corpora [36.446905777292066]
Decoder-Only Transformer for ASR (DOTA) モデルは、ほぼ全ての英語のASRベンチマークおよび15のテストセット中7つのWhisper large-v3で、エンコーダ-デコーダのオープンソースレプリケーション(OWSM)を総じて上回っている。
論文 参考訳(メタデータ) (2024-01-31T23:29:42Z) - From English to More Languages: Parameter-Efficient Model Reprogramming
for Cross-Lingual Speech Recognition [50.93943755401025]
言語間音声認識のためのニューラルモデル再プログラミングに基づく新しいパラメータ効率学習フレームワークを提案する。
我々は、学習可能な事前学習機能強化に焦点を当てた、異なる補助的ニューラルネットワークアーキテクチャを設計する。
提案手法は,既存のASRチューニングアーキテクチャとその拡張性能を自己監督的損失で向上させる。
論文 参考訳(メタデータ) (2023-01-19T02:37:56Z) - Analyzing And Improving Neural Speaker Embeddings for ASR [54.30093015525726]
本稿では,コンバータをベースとしたハイブリッドHMM ASRシステムに,ニューラルスピーカーの埋め込みを統合するための取り組みについて述べる。
話者埋め込みを用いたコンフォーマーベースハイブリッドASRシステムは, SWB 300hでのトレーニングにより, Hub5'00 と Hub5'01 で 9.0% WER を達成する。
論文 参考訳(メタデータ) (2023-01-11T16:56:03Z) - SRU++: Pioneering Fast Recurrence with Attention for Speech Recognition [49.42625022146008]
複数のASRベンチマークでコンフォーマーと比較することにより,SRU++をASRタスクに適用する利点を示す。
具体的には,SRU++ が長文音声入力において Conformer を追い越すことができる。
論文 参考訳(メタデータ) (2021-10-11T19:23:50Z) - Improving RNN-T ASR Performance with Date-Time and Location Awareness [6.308539010172309]
文脈情報を個別に使用すると、ベースラインに対して最大3.48%の性能が向上することを示す。
特定の領域では、これらの文脈信号は最大11.5%の改善を示すが、他の領域では顕著な劣化はない。
以上の結果から,ASRモデルの訓練に限られたデータを用いると,文脈信号により性能が大幅に向上することが示唆された。
論文 参考訳(メタデータ) (2021-06-11T05:57:30Z) - Raw Waveform Encoder with Multi-Scale Globally Attentive Locally
Recurrent Networks for End-to-End Speech Recognition [45.858039215825656]
本稿では,グローバルな注意的局所再帰(GALR)ネットワークを採用し,生波形を直接入力とする新しいエンコーダを提案する。
ベンチマークデータセットAISHELL-2と,5,000時間21,000時間の大規模マンダリン音声コーパスを用いて実験を行った。
論文 参考訳(メタデータ) (2021-06-08T12:12:33Z) - Advanced Long-context End-to-end Speech Recognition Using
Context-expanded Transformers [56.56220390953412]
コンフォーメータアーキテクチャを導入することで、精度をさらに向上させ、以前の作業を拡張します。
拡張トランスフォーマーは、最先端のエンドツーエンドのASR性能を提供する。
論文 参考訳(メタデータ) (2021-04-19T16:18:00Z) - You Do Not Need More Data: Improving End-To-End Speech Recognition by
Text-To-Speech Data Augmentation [59.31769998728787]
我々は、ASRトレーニングデータベース上にTSシステムを構築し、合成音声でデータを拡張し、認識モデルを訓練する。
テストクリーンはWER 4.3%,他のテストクリーンは13.5%で、このシステムはLibriSpeechトレインクリーン100で訓練されたエンドツーエンドASRの競争結果を確立している。
論文 参考訳(メタデータ) (2020-05-14T17:24:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。