論文の概要: Codec-ASR: Training Performant Automatic Speech Recognition Systems with Discrete Speech Representations
- arxiv url: http://arxiv.org/abs/2407.03495v1
- Date: Wed, 3 Jul 2024 20:51:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 19:51:01.606399
- Title: Codec-ASR: Training Performant Automatic Speech Recognition Systems with Discrete Speech Representations
- Title(参考訳): Codec-ASR:離散音声表現を用いた高性能音声認識システムの訓練
- Authors: Kunal Dhawan, Nithin Rao Koluguri, Ante Jukić, Ryan Langman, Jagadeesh Balam, Boris Ginsburg,
- Abstract要約: 本稿では、離散符号を用いたASRシステム構築に関する総合的な分析を行う。
本稿では,量子化スキームや時間領域,スペクトル特徴符号化などの異なる手法について検討する。
同様のビットレートでEncodecを上回るパイプラインを導入する。
- 参考スコア(独自算出の注目度): 16.577870835480585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discrete speech representations have garnered recent attention for their efficacy in training transformer-based models for various speech-related tasks such as automatic speech recognition (ASR), translation, speaker verification, and joint speech-text foundational models. In this work, we present a comprehensive analysis on building ASR systems with discrete codes. We investigate different methods for codec training such as quantization schemes and time-domain vs spectral feature encodings. We further explore ASR training techniques aimed at enhancing performance, training efficiency, and noise robustness. Drawing upon our findings, we introduce a codec ASR pipeline that outperforms Encodec at similar bit-rate. Remarkably, it also surpasses the state-of-the-art results achieved by strong self-supervised models on the 143 languages ML-SUPERB benchmark despite being smaller in size and pretrained on significantly less data.
- Abstract(参考訳): 音声認識(ASR)、翻訳、話者検証、共同音声テキスト基礎モデルなど、様々な音声関連タスクに対するトランスフォーマーベースモデルのトレーニングの有効性について、離散音声表現は近年注目されている。
本研究では、離散符号を用いたASRシステム構築に関する総合的な分析を行う。
本稿では,量子化スキームや時間領域,スペクトル特徴符号化といったコーデックトレーニングの異なる手法について検討する。
さらに、性能の向上、訓練効率の向上、騒音の堅牢性向上を目的としたASRトレーニング手法について検討する。
この結果をもとに,エンコーデックを同様のビットレートで上回るコーデックASRパイプラインを導入した。
注目すべきは、サイズが小さく、データ量も大幅に少ないにも関わらず、143言語ML-SUPERBベンチマークの強力な自己教師型モデルによって達成された最先端の結果を上回ることだ。
関連論文リスト
- Large Language Models Are Strong Audio-Visual Speech Recognition Learners [53.142635674428874]
マルチモーダル・大規模言語モデル(MLLM)は,近年,多モーダル理解能力の強化により,研究の焦点となっている。
本稿では,Llama-AVSRを提案する。
我々は,最大公的なAVSRベンチマークであるLSS3に対する提案手法の評価を行い,WERが0.81%,0.77%であるASRとAVSRのタスクに対して,新しい最先端の結果を得た。
論文 参考訳(メタデータ) (2024-09-18T21:17:27Z) - TokenSplit: Using Discrete Speech Representations for Direct, Refined,
and Transcript-Conditioned Speech Separation and Recognition [51.565319173790314]
TokenSplit は Transformer アーキテクチャを使用するシーケンス・ツー・シーケンス・エンコーダ・デコーダモデルである。
また,本モデルでは,書き起こし条件付けの有無にかかわらず,分離の点で優れた性能を発揮することを示す。
また、自動音声認識(ASR)の性能を測定し、音声合成の音声サンプルを提供し、我々のモデルの有用性を実証する。
論文 参考訳(メタデータ) (2023-08-21T01:52:01Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
本稿では,事前学習および微調整訓練の枠組みの下で,音声視覚音声認識(AVSR)を改善するための2つの新しい手法を提案する。
まず, マンダリンにおける口唇形状と音節レベルサブワード単位の相関について検討し, 口唇形状から良好なフレームレベル音節境界を確立する。
次に,音声誘導型クロスモーダルフュージョンエンコーダ(CMFE)ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-14T08:19:24Z) - Lip2Vec: Efficient and Robust Visual Speech Recognition via
Latent-to-Latent Visual to Audio Representation Mapping [4.271091833712731]
従来のモデルから学習するシンプルなアプローチであるLip2Vecを提案する。
提案手法は LRS3 データセット上で26 WER を達成する完全教師付き学習法と比較した。
我々は、VSRをASRタスクとして再プログラムすることで、両者のパフォーマンスギャップを狭め、より柔軟な唇読解法を構築することができると考えている。
論文 参考訳(メタデータ) (2023-08-11T12:59:02Z) - Supervision-Guided Codebooks for Masked Prediction in Speech
Pre-training [102.14558233502514]
自己教師型学習(SSL)における事前学習のマズード予測は,音声認識における顕著な進歩をみせている。
本稿では,自動音声認識(ASR)の性能向上のための2つの教師付きコードブック生成手法を提案する。
論文 参考訳(メタデータ) (2022-06-21T06:08:30Z) - Content-Context Factorized Representations for Automated Speech
Recognition [12.618527387900079]
本稿では、教師なしのエンコーダに依存しない音声エンコーダ表現を明示的なコンテンツエンコーダ表現と刺激的なコンテキストエンコーダ表現に分解する手法を提案する。
我々は,標準的なASRベンチマークの性能向上に加えて,実環境と人工ノイズの両方のASRシナリオの性能向上を実証した。
論文 参考訳(メタデータ) (2022-05-19T21:34:40Z) - Wav2Seq: Pre-training Speech-to-Text Encoder-Decoder Models Using Pseudo
Languages [58.43299730989809]
本稿では,音声データに対するエンコーダ・デコーダモデルの両部分を事前学習するための,最初の自己教師型アプローチであるWav2Seqを紹介する。
我々は、コンパクトな離散表現として擬似言語を誘導し、自己教師付き擬似音声認識タスクを定式化する。
このプロセスは独自のものであり、低コストの第2段階のトレーニングとして適用することができる。
論文 参考訳(メタデータ) (2022-05-02T17:59:02Z) - Automatic Audio Captioning using Attention weighted Event based
Embeddings [25.258177951665594]
本稿では,AACのための軽量(学習可能なパラメータが少ない)Bi-LSTM再帰層を有するエンコーダデコーダアーキテクチャを提案する。
AEDを用いた効率的な埋込み抽出器と時間的注意と拡張技術を組み合わせることで,既存の文献を超越できることを示す。
論文 参考訳(メタデータ) (2022-01-28T05:54:19Z) - Multiresolution and Multimodal Speech Recognition with Transformers [22.995102995029576]
本稿ではトランスフォーマーアーキテクチャを用いた音声視覚自動音声認識(AV-ASR)システムを提案する。
我々は、視覚情報によって提供されるシーンコンテキストに着目して、ASRを接地する。
私たちの結果は、最先端のListen、Attend、Spellベースのアーキテクチャに匹敵します。
論文 参考訳(メタデータ) (2020-04-29T09:32:11Z) - Streaming automatic speech recognition with the transformer model [59.58318952000571]
本稿では,ストリーミングASRのためのトランスフォーマーに基づくエンドツーエンドASRシステムを提案する。
本研究では,エンコーダに時間制限付き自己アテンションを適用し,エンコーダ・デコーダのアテンション機構に注意を喚起する。
提案したストリーミングトランスアーキテクチャは,LibriSpeechの「クリーン」および「他の」テストデータに対して,2.8%と7.2%のWERを実現する。
論文 参考訳(メタデータ) (2020-01-08T18:58:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。