Autonomous Path Planning for Intercostal Robotic Ultrasound Imaging Using Reinforcement Learning
- URL: http://arxiv.org/abs/2404.09927v1
- Date: Mon, 15 Apr 2024 16:52:53 GMT
- Title: Autonomous Path Planning for Intercostal Robotic Ultrasound Imaging Using Reinforcement Learning
- Authors: Yuan Bi, Cheng Qian, Zhicheng Zhang, Nassir Navab, Zhongliang Jiang,
- Abstract summary: The US examination for thoracic application is still challenging due to the acoustic shadow cast by the subcutaneous rib cage.
We present a reinforcement learning approach for planning scanning paths between ribs to monitor changes in lesions on internal organs.
Experiments have been carried out on unseen CTs with randomly defined single or multiple scanning targets.
- Score: 45.5123007404575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ultrasound (US) has been widely used in daily clinical practice for screening internal organs and guiding interventions. However, due to the acoustic shadow cast by the subcutaneous rib cage, the US examination for thoracic application is still challenging. To fully cover and reconstruct the region of interest in US for diagnosis, an intercostal scanning path is necessary. To tackle this challenge, we present a reinforcement learning (RL) approach for planning scanning paths between ribs to monitor changes in lesions on internal organs, such as the liver and heart, which are covered by rib cages. Structured anatomical information of the human skeleton is crucial for planning these intercostal paths. To obtain such anatomical insight, an RL agent is trained in a virtual environment constructed using computational tomography (CT) templates with randomly initialized tumors of various shapes and locations. In addition, task-specific state representation and reward functions are introduced to ensure the convergence of the training process while minimizing the effects of acoustic attenuation and shadows during scanning. To validate the effectiveness of the proposed approach, experiments have been carried out on unseen CTs with randomly defined single or multiple scanning targets. The results demonstrate the efficiency of the proposed RL framework in planning non-shadowed US scanning trajectories in areas with limited acoustic access.
Related papers
- CTARR: A fast and robust method for identifying anatomical regions on CT images via atlas registration [0.09130220606101362]
We introduce CTARR, a novel generic method for CT Anatomical Region Recognition.
The method serves as a pre-processing step for any deep learning-based CT image analysis pipeline.
Our proposed method is based on atlas registration and provides a fast and robust way to crop any anatomical region encoded as one or multiple bounding box(es) from any unlabeled CT scan.
arXiv Detail & Related papers (2024-10-03T08:52:21Z) - Class-Aware Cartilage Segmentation for Autonomous US-CT Registration in Robotic Intercostal Ultrasound Imaging [39.597735935731386]
A class-aware cartilage bone segmentation network with geometry-constraint post-processing is presented to capture patient-specific rib skeletons.
A dense skeleton graph-based non-rigid registration is presented to map the intercostal scanning path from a generic template to individual patients.
Results demonstrate that the proposed graph-based registration method can robustly and precisely map the path from CT template to individual patients.
arXiv Detail & Related papers (2024-06-06T14:15:15Z) - CT-based brain ventricle segmentation via diffusion Schrödinger Bridge without target domain ground truths [0.9720086191214947]
Efficient and accurate brain ventricle segmentation from clinical CT scans is critical for emergency surgeries like ventriculostomy.
We introduce a novel uncertainty-aware ventricle segmentation technique without the need of CT segmentation ground truths.
Our method employs the diffusion Schr"odinger Bridge and an attention recurrent residual U-Net to capitalize on unpaired CT and MRI scans.
arXiv Detail & Related papers (2024-05-28T15:17:58Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Towards Autonomous Atlas-based Ultrasound Acquisitions in Presence of
Articulated Motion [48.52403516006036]
This paper proposes a vision-based approach allowing autonomous robotic US limb scanning.
To this end, an atlas MRI template of a human arm with annotated vascular structures is used to generate trajectories.
In all cases, the system can successfully acquire the planned vascular structure on volunteers' limbs.
arXiv Detail & Related papers (2022-08-10T15:39:20Z) - Distance-based detection of out-of-distribution silent failures for
Covid-19 lung lesion segmentation [0.8200989595956418]
Deep learning models are not trusted in the clinical routine due to failing silently on out-of-distribution data.
We propose a lightweight OOD detection method that leverages the Mahalanobis distance in the feature space.
We validate our method across four chest CT distribution shifts and two magnetic resonance imaging applications.
arXiv Detail & Related papers (2022-08-05T15:05:23Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - Anatomy-guided Multimodal Registration by Learning Segmentation without
Ground Truth: Application to Intraprocedural CBCT/MR Liver Segmentation and
Registration [12.861503169117208]
Multimodal image registration has many applications in diagnostic medical imaging and image-guided interventions.
The ability to register peri-procedurally acquired diagnostic images into the intraprocedural environment can potentially improve the intra-procedural tumor targeting.
We propose an anatomy-preserving domain adaptation to segmentation network (APA2Seg-Net) for learning segmentation without target modality ground truth.
arXiv Detail & Related papers (2021-04-14T18:07:03Z) - Deep Reinforcement Learning for Organ Localization in CT [59.23083161858951]
We propose a deep reinforcement learning approach for organ localization in CT.
In this work, an artificial agent is actively self-taught to localize organs in CT by learning from its asserts and mistakes.
Our method can use as a plug-and-play module for localizing any organ of interest.
arXiv Detail & Related papers (2020-05-11T10:06:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.