Biomimicry in Radiation Therapy: Optimizing Patient Scheduling for Improved Treatment Outcomes
- URL: http://arxiv.org/abs/2404.09996v1
- Date: Tue, 16 Jan 2024 15:37:23 GMT
- Title: Biomimicry in Radiation Therapy: Optimizing Patient Scheduling for Improved Treatment Outcomes
- Authors: Keshav Kumar K., NVSL Narasimham,
- Abstract summary: This study delves into the integration of biomimicry principles within the domain of Radiation Therapy (RT) to optimize patient scheduling.
Three bio-inspired algorithms are employed for optimization to tackle the complex online scheduling problem.
The results of this study unveil the effectiveness of applied bio-inspired algorithms in optimizing patient scheduling for RT.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the realm of medical science, the pursuit of enhancing treatment efficacy and patient outcomes continues to drive innovation. This study delves into the integration of biomimicry principles within the domain of Radiation Therapy (RT) to optimize patient scheduling, ultimately aiming to augment treatment results. RT stands as a vital medical technique for eradicating cancer cells and diminishing tumor sizes. Yet, the manual scheduling of patients for RT proves both laborious and intricate. In this research, the focus is on automating patient scheduling for RT through the application of optimization methodologies. Three bio-inspired algorithms are employed for optimization to tackle the complex online stochastic scheduling problem. These algorithms include the Genetic Algorithm (GA), Firefly Optimization (FFO), and Wolf Optimization (WO). These algorithms are harnessed to address the intricate challenges of online stochastic scheduling. Through rigorous evaluation, involving the scrutiny of convergence time, runtime, and objective values, the comparative performance of these algorithms is determined. The results of this study unveil the effectiveness of the applied bio-inspired algorithms in optimizing patient scheduling for RT. Among the algorithms examined, WO emerges as the frontrunner, consistently delivering superior outcomes across various evaluation criteria. The optimization approach showcased in this study holds the potential to streamline processes, reduce manual intervention, and ultimately improve treatment outcomes for patients undergoing RT.
Related papers
- A Self-supervised Multimodal Deep Learning Approach to Differentiate Post-radiotherapy Progression from Pseudoprogression in Glioblastoma [5.98776969609135]
Accurate differentiation of pseudoprogression (PsP) from True Progression (TP) following radiotherapy in glioblastoma (GBM) patients is crucial for optimal treatment planning.
This study proposes a multimodal deep-learning approach utilizing complementary information from routine anatomical MR images, clinical parameters, and RT treatment planning information for improved predictive accuracy.
arXiv Detail & Related papers (2025-02-06T11:57:57Z) - Random-Key Algorithms for Optimizing Integrated Operating Room Scheduling [0.16385815610837165]
This study introduces a novel concept of Random-Key (RKO), rigorously tested on literature and new real-world inspired instances.
Our literature optimization problem incorporates multi-room scheduling, equipment scheduling, and complex availability constraints.
The RKO approach represents solutions as points in a continuous space, which are then mapped in the problem solution space via a deterministic function known as a decoder.
arXiv Detail & Related papers (2025-01-17T15:11:30Z) - Improved Genetic Algorithm Based on Greedy and Simulated Annealing Ideas for Vascular Robot Ordering Strategy [7.51372615162241]
This study presents a comprehensive approach for optimizing the acquisition, utilization, and maintenance of ABLVR vascular robots in healthcare settings.
Considering the dynamic healthcare environment, our approach includes a robust resource allocation model for robotic vessels and operators.
We incorporate the unique requirements of the adaptive learning process for operators and the maintenance needs of robotic components.
arXiv Detail & Related papers (2024-03-28T15:14:03Z) - Safe and Interpretable Estimation of Optimal Treatment Regimes [54.257304443780434]
We operationalize a safe and interpretable framework to identify optimal treatment regimes.
Our findings support personalized treatment strategies based on a patient's medical history and pharmacological features.
arXiv Detail & Related papers (2023-10-23T19:59:10Z) - A novel Network Science Algorithm for Improving Triage of Patients [2.209921757303168]
Patient triage plays a crucial role in healthcare, ensuring timely and appropriate care based on the urgency of patient conditions.
Recent interest has been in leveraging artificial intelligence (AI) to develop algorithms for triaging patients.
This paper presents the development of a novel algorithm for triaging patients. It is based on the analysis of patient data to produce decisions regarding their prioritization.
arXiv Detail & Related papers (2023-10-09T08:47:12Z) - Tumoral Angiogenic Optimizer: A new bio-inspired based metaheuristic [5.013833066304755]
We propose a new metaheuristic inspired by the morphogenetic cellular movements of endothelial cells (ECs) that occur during the tumor angiogenesis process.
The proposed algorithm is applied to real-world problems (cantilever beam design, pressure vessel design, tension/compression spring and sustainable explotation renewable resource)
arXiv Detail & Related papers (2023-09-12T03:51:53Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
It is important that the patient discharge task addresses the nuanced trade-off between decreasing a patient's length of stay and the risk of readmission or even death following the discharge decision.
This work introduces an end-to-end general framework for capturing this trade-off to recommend optimal discharge timing decisions.
A data-driven approach is used to derive a parsimonious, discrete state space representation that captures a patient's physiological condition.
arXiv Detail & Related papers (2021-12-17T04:39:33Z) - Resource Planning for Hospitals Under Special Consideration of the
COVID-19 Pandemic: Optimization and Sensitivity Analysis [87.31348761201716]
Crises like the COVID-19 pandemic pose a serious challenge to health-care institutions.
BaBSim.Hospital is a tool for capacity planning based on discrete event simulation.
We aim to investigate and optimize these parameters to improve BaBSim.Hospital.
arXiv Detail & Related papers (2021-05-16T12:38:35Z) - A feasibility study of a hyperparameter tuning approach to automated
inverse planning in radiotherapy [68.8204255655161]
The purpose of this study is to automate the inverse planning process to reduce active planning time while maintaining plan quality.
We investigated the impact of the choice of dose parameters, random and Bayesian search methods, and utility function form on planning time and plan quality.
Using 100 samples was found to produce satisfactory plan quality, and the average planning time was 2.3 hours.
arXiv Detail & Related papers (2021-05-14T18:37:00Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - DTR Bandit: Learning to Make Response-Adaptive Decisions With Low Regret [59.81290762273153]
Dynamic treatment regimes (DTRs) are personalized, adaptive, multi-stage treatment plans that adapt treatment decisions to an individual's initial features and to intermediate outcomes and features at each subsequent stage.
We propose a novel algorithm that, by carefully balancing exploration and exploitation, is guaranteed to achieve rate-optimal regret when the transition and reward models are linear.
arXiv Detail & Related papers (2020-05-06T13:03:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.