論文の概要: ClimODE: Climate and Weather Forecasting with Physics-informed Neural ODEs
- arxiv url: http://arxiv.org/abs/2404.10024v1
- Date: Mon, 15 Apr 2024 06:38:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 21:08:17.966640
- Title: ClimODE: Climate and Weather Forecasting with Physics-informed Neural ODEs
- Title(参考訳): ClimODE:物理インフォームドニューラルネットワークによる気候・天気予報
- Authors: Yogesh Verma, Markus Heinonen, Vikas Garg,
- Abstract要約: 統計力学の重要な原理を実装した連続時間プロセスであるClimODEを提案する。
ClimODEは、値保存ダイナミクスによる正確な気象進化をモデル化し、ニューラルネットワークとしてグローバルな気象輸送を学習する。
提案手法は,大域的,地域的予測において,パラメータ化の桁違いで既存のデータ駆動手法より優れる。
- 参考スコア(独自算出の注目度): 14.095897879222676
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Climate and weather prediction traditionally relies on complex numerical simulations of atmospheric physics. Deep learning approaches, such as transformers, have recently challenged the simulation paradigm with complex network forecasts. However, they often act as data-driven black-box models that neglect the underlying physics and lack uncertainty quantification. We address these limitations with ClimODE, a spatiotemporal continuous-time process that implements a key principle of advection from statistical mechanics, namely, weather changes due to a spatial movement of quantities over time. ClimODE models precise weather evolution with value-conserving dynamics, learning global weather transport as a neural flow, which also enables estimating the uncertainty in predictions. Our approach outperforms existing data-driven methods in global and regional forecasting with an order of magnitude smaller parameterization, establishing a new state of the art.
- Abstract(参考訳): 気候と気象の予測は伝統的に大気物理学の複雑な数値シミュレーションに依存している。
トランスフォーマーのようなディープラーニングアプローチは、最近、複雑なネットワーク予測を伴うシミュレーションパラダイムに挑戦している。
しかし、それらはしばしばデータ駆動ブラックボックスモデルとして機能し、基礎となる物理学を無視し、不確実な定量化を欠いている。
これらの制限を,時空間移動による気象変化という,統計力学からのアドベクションの重要な原理を具現化した時空間連続時間プロセスであるClimODEを用いて解決する。
ClimODEは、値保存ダイナミクスによる正確な気象進化をモデル化し、大域的な気象輸送をニューラルネットワークとして学習し、予測の不確実性を推定する。
提案手法は, グローバルおよび地域予測において, パラメータ化の桁数を大幅に小さくして既存のデータ駆動手法より優れ, 新たな最先端技術を確立している。
関連論文リスト
- Mitigating Time Discretization Challenges with WeatherODE: A Sandwich Physics-Driven Neural ODE for Weather Forecasting [20.135470301151727]
天気予報精度を向上させるために,新しい物理駆動型常微分方程式(ODE)モデルを提案する。
波動方程式理論の活用と時間依存ソースモデルの統合により、気象学は時分割誤差や動的大気過程に関連する課題を効果的に解決する。
気象予報は, 気象予報と地域気象予報の双方において優れた性能を示し, 近年の最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-09T05:41:24Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - STC-ViT: Spatio Temporal Continuous Vision Transformer for Weather Forecasting [0.0]
天気予報のための時空間連続トランスフォーマービジョンであるSTC-ViTを提案する。
STC-ViTは、連続した天気変化を時間とともに学習するために、マルチヘッドアテンション機構を備えた連続時間ニューラルODE層を組み込んでいる。
STC-ViTは,操作型数値天気予報(NWP)モデルと,深層学習に基づく天気予報モデルとを比較した。
論文 参考訳(メタデータ) (2024-02-28T01:15:30Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Skillful Twelve Hour Precipitation Forecasts using Large Context Neural
Networks [8.086653045816151]
現在の運用予測モデルは物理に基づいており、大気をシミュレートするためにスーパーコンピュータを使用している。
ニューラルネットワークに基づく新しい気象モデルのクラスは、天気予報のパラダイムシフトを表している。
最大12時間前に降水予測が可能なニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-11-14T22:53:04Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
本稿では,連続的畳み込み再帰層間の新しい2次元クロスアテンション機構を特徴とするエンコーダデコーダモデルであるTRU-NETを提案する。
降雨のゼロ・スクイド・%極端事象パターンを捉えるために,条件付き連続損失関数を用いた。
実験の結果,短期降水予測ではDLモデルよりもRMSEとMAEのスコアが低いことがわかった。
論文 参考訳(メタデータ) (2020-08-20T17:27:59Z) - Improving data-driven global weather prediction using deep convolutional
neural networks on a cubed sphere [7.918783985810551]
深層畳み込みニューラルネットワーク(CNN)を用いたデータ駆動型世界天気予報フレームワークを提案する。
このフレームワークの新しい開発には、オフラインの体積保存的マッピングから立方体球格子へのマッピングが含まれる。
我々のモデルでは、入力された大気状態の少ない変数から複雑な表面温度パターンを予測することができる。
論文 参考訳(メタデータ) (2020-03-15T19:57:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。