Bayesian preference elicitation for multiobjective combinatorial
optimization
- URL: http://arxiv.org/abs/2007.14778v1
- Date: Wed, 29 Jul 2020 12:28:37 GMT
- Title: Bayesian preference elicitation for multiobjective combinatorial
optimization
- Authors: Nadjet Bourdache, Patrice Perny and Olivier Spanjaard
- Abstract summary: We introduce a new incremental preference elicitation procedure able to deal with noisy responses of a Decision Maker (DM)
We assume that the preferences of the DM are represented by an aggregation function whose parameters are unknown and that the uncertainty about them is represented by a density function on the parameter space.
- Score: 12.96855751244076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a new incremental preference elicitation procedure able to deal
with noisy responses of a Decision Maker (DM). The originality of the
contribution is to propose a Bayesian approach for determining a preferred
solution in a multiobjective decision problem involving a combinatorial set of
alternatives. We assume that the preferences of the DM are represented by an
aggregation function whose parameters are unknown and that the uncertainty
about them is represented by a density function on the parameter space.
Pairwise comparison queries are used to reduce this uncertainty (by Bayesian
revision). The query selection strategy is based on the solution of a mixed
integer linear program with a combinatorial set of variables and constraints,
which requires to use columns and constraints generation methods. Numerical
tests are provided to show the practicability of the approach.
Related papers
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - An Efficient Approach for Solving Expensive Constrained Multiobjective Optimization Problems [0.0]
An efficient probabilistic selection based constrained multi-objective EA is proposed, referred to as PSCMOEA.
It comprises novel elements such as (a) an adaptive search bound identification scheme based on the feasibility and convergence status of evaluated solutions.
Numerical experiments are conducted on an extensive range of challenging constrained problems using low evaluation budgets to simulate ECMOPs.
arXiv Detail & Related papers (2024-05-22T02:32:58Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - A multi-criteria approach for selecting an explanation from the set of counterfactuals produced by an ensemble of explainers [4.239829789304117]
We propose to use a multi-stage ensemble approach that will select single counterfactual based on the multiple-criteria analysis.
The proposed approach generates fully actionable counterfactuals with attractive compromise values of the considered quality measures.
arXiv Detail & Related papers (2024-03-20T19:25:11Z) - RIGA: A Regret-Based Interactive Genetic Algorithm [14.388696798649658]
We propose an interactive genetic algorithm for solving multi-objective optimization problems under preference imprecision.
Our algorithm, called RIGA, can be applied to any multi-objective optimization problem provided that the aggregation function is linear in its parameters.
For several performance indicators (computation times, gap to optimality and number of queries), RIGA obtains better results than state-of-the-art algorithms.
arXiv Detail & Related papers (2023-11-10T13:56:15Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Global and Preference-based Optimization with Mixed Variables using Piecewise Affine Surrogates [0.6083861980670925]
This paper proposes a novel surrogate-based global optimization algorithm to solve linearly constrained mixed-variable problems.
We assume the objective function is black-box and expensive-to-evaluate, while the linear constraints are quantifiable unrelaxable a priori known.
We introduce two types of exploration functions to efficiently search the feasible domain via mixed-integer linear programming solvers.
arXiv Detail & Related papers (2023-02-09T15:04:35Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
arXiv Detail & Related papers (2021-11-26T06:33:29Z) - Variable selection for Gaussian process regression through a sparse
projection [0.802904964931021]
This paper presents a new variable selection approach integrated with Gaussian process (GP) regression.
The choice of tuning parameters and the accuracy of the estimation are evaluated with the simulation some chosen benchmark approaches.
arXiv Detail & Related papers (2020-08-25T01:06:10Z) - Multi-Task Multicriteria Hyperparameter Optimization [77.34726150561087]
The article begins with a mathematical formulation of the problem of choosing optimal hyperparameters.
The steps of the MTMC method that solves this problem are described.
The proposed method is evaluated on the image classification problem using a convolutional neural network.
arXiv Detail & Related papers (2020-02-15T12:47:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.