Rotational Superradiance in a Time-Reversal Symmetry-Broken Quantum Gas inside an Optical Cavity
- URL: http://arxiv.org/abs/2404.10131v1
- Date: Mon, 15 Apr 2024 20:41:24 GMT
- Title: Rotational Superradiance in a Time-Reversal Symmetry-Broken Quantum Gas inside an Optical Cavity
- Authors: Natalia Masalaeva, Farokh Mivehvar,
- Abstract summary: quantized vortices in a superfluid and a Bose-Einstein condensate (BEC) stem from their nontrivial response to broken time-reversal symmetry (TRS)
We show that breaking of the TRS by, for example, rotation or an external synthetic magnetic field in a transversely-driven BEC modifies drastically Dicke-superradiance and self-ordering phenomena in this system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Appearance of quantized vortices in a superfluid and a Bose-Einstein condensate (BEC) stems from their nontrivial response to broken time-reversal symmetry (TRS). Here we show that breaking of the TRS by, for example, rotation or an external synthetic magnetic field in a transversely-driven BEC coupled to a single mode of an optical cavity modifies drastically Dicke-superradiance and self-ordering phenomena in this system. In particular, photon scattering from the pump laser into the cavity is amplified by the rotational motion of the BEC, leading to so-called 'rotational superradiance' - in a loose analogy to black-hole physics - with distinct critical scaling properties. Another notable finding is that cavity photons mediate long-range, periodic attractive interactions among the vortices, which compete with pair-wise logarithmic repulsive vortex interactions and deform the Abrikosov triangular vortex lattice favoring a stripe-like pattern. Remarkably, the rotation of the BEC and topological properties of the vortex lattice can be monitored nondestructively through the cavity output field.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Spontaneous superradiant photon current [3.9142816997810743]
This work reports the spontaneous emergence of a photon current in a class of spin-cavity systems.
Specifically, photons in a superradiant phase afforded by coherent photon-emitter interaction spontaneously flow from a cavity.
arXiv Detail & Related papers (2024-02-23T07:57:40Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Quantum Interference by Vortex Supercurrents [0.0]
We analyze the origin of the parabolic background of magnetoresistance oscillations measured in finite-width superconducting mesoscopic rings with input and output stubs and in patterned films.
The onset of vortices changes the topology of the superconducting state in a mesoscopic ring in a such a way that the full magnetoresistance dynamics can be interpreted owing to the interference of the constituents of the order parameter induced by both the ring with its doubly-connected topology and the vortex lattice in it.
arXiv Detail & Related papers (2023-05-23T11:27:14Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - Searching for Ultra-Light Axions with Twisted Cavity Resonators of Anyon
Rotational Symmetry with Bulk Modes of Non-Zero Helicity [0.0]
M"obius-ring resonators stem from a well-studied and fascinating geometrical structure that features a one-sided topology.
We present a new type of resonator through the formation of twisted hollow structures using equilateral triangular cross-sections.
arXiv Detail & Related papers (2022-08-01T21:35:31Z) - Lasing and counter-lasing phase transitions in a cavity QED system [0.0]
We study the effect of spontaneous emission and incoherent atomic pumping on the nonlinear semiclassical dynamics of the unbalanced Dicke model.
As well as the ubiquitous superradiant behavior the Dicke model is well-known for, the addition of spontaneous emission combined with the presence of strong counter-rotating terms creates laser-like behavior termed counter-lasing.
arXiv Detail & Related papers (2022-01-30T10:08:55Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z) - Tuning the mode-splitting of a semiconductor microcavity with uniaxial
stress [49.212762955720706]
In this work we use an open microcavity composed of a "bottom" semiconductor distributed Bragg reflector (DBR) incorporating an n-i-p heterostructure.
We demonstrate a reversible in-situ technique to tune the mode-splitting by applying uniaxial stress to the semiconductor DBR.
A thorough study of the mode-splitting and its tuning across the stop-band leads to a quantitative understanding of the mechanism behind the results.
arXiv Detail & Related papers (2021-02-18T13:38:32Z) - Ultrafast and Strong-Field Physics in Graphene-Like Crystals: Bloch Band
Topology and High-Harmonic Generation [0.0]
This letter introduces a theoretical framework for the nonperturbative electron dynamics in two-dimensional (2D) crystalline solids induced by the few-cycle and strong-field optical lasers.
In our theoretical experiment on 2D materials in the strong-field optical regime, we show that Bloch band topology and broken symmetry manifest themselves in several ways.
arXiv Detail & Related papers (2021-01-10T22:32:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.