Quantum Interference by Vortex Supercurrents
- URL: http://arxiv.org/abs/2305.13952v1
- Date: Tue, 23 May 2023 11:27:14 GMT
- Title: Quantum Interference by Vortex Supercurrents
- Authors: G. P. Papari and V. M. Fomin
- Abstract summary: We analyze the origin of the parabolic background of magnetoresistance oscillations measured in finite-width superconducting mesoscopic rings with input and output stubs and in patterned films.
The onset of vortices changes the topology of the superconducting state in a mesoscopic ring in a such a way that the full magnetoresistance dynamics can be interpreted owing to the interference of the constituents of the order parameter induced by both the ring with its doubly-connected topology and the vortex lattice in it.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We analyze the origin of the parabolic background of magnetoresistance
oscillations measured in finite-width superconducting mesoscopic rings with
input and output stubs and in patterned films. The transmission model
explaining the sinusoidal oscillation of magnetoresistance is extended to
address the parabolic background as a function of the magnetic field. Apart
from the interference mechanism activated by the ring, pinned superconducting
vortices as topological defects introduce a further interference-based
distribution of supercurrents that affects, in turn, the voltmeter-sensed
quasiparticles. The onset of vortices changes the topology of the
superconducting state in a mesoscopic ring in a such a way that the full
magnetoresistance dynamics can be interpreted owing to the interference of the
constituents of the order parameter induced by both the ring with its
doubly-connected topology and the vortex lattice in it.
Related papers
- Magnetoresistance oscillations induced by geometry in a two-dimensional quantum ring [0.0]
We consider a GaAs device having an average radius of $800hspace0.05cmtextnm$ in different regimes of subband occupation at non-zero temperature.
We explore how the modified surface affects the Van-Hoove conductance singularities and the magnetoresistance interference patterns resulting from the Aharonov-Bohm oscillations of different frequencies.
arXiv Detail & Related papers (2024-06-21T13:54:40Z) - Fragmented superconductivity in the Hubbard model as solitons in
Ginzburg-Landau theory [58.720142291102135]
Superconductivity and charge density waves are observed in close vicinity in strongly correlated materials.
We investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$tprime$-$U$ Hubbard model.
We provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation.
arXiv Detail & Related papers (2023-07-21T18:00:07Z) - Flux noise in disordered spin systems [0.0]
Impurity spins randomly distributed at the surfaces and interfaces of superconducting wires are known to cause flux noise.
We propose an intermediate "second principles" method to describe general spin dissipation and flux noise in the quantum regime.
arXiv Detail & Related papers (2022-07-20T16:53:01Z) - Thermal self-oscillations in monolayer graphene coupled to a
superconducting microwave cavity [58.720142291102135]
We observe thermal self-oscillations in a monolayer graphene flake coupled to superconducting resonator.
The experimental observations fit well with theoretical model based on thermal instability.
The modelling of the oscillation sidebands provides a method to evaluate electron phonon coupling in disordered graphene sample at low energies.
arXiv Detail & Related papers (2022-05-27T15:38:41Z) - Quantum interference in finite-size mesoscopic rings [0.0]
Ginzburg-Landau theory is used to model the order parameter of a finite-size mesoscopic ring.
The magnetic flux breaks the symmetry of currents between input and output stubs by means of an induced spatial ordering upon diamagnetic and paramagnetic supercurrents circulating in the ring.
arXiv Detail & Related papers (2022-01-12T09:52:59Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Interplay between singlet and triplet pairings in multi-band
two-dimensional oxide superconductors [0.0]
We study the superconducting properties of multi-band two-dimensional transition metal oxide superconductors.
The interplay between the singlet and the triplet pairings affects the dispersion of quasi-particle excitations in the Brillouin zone.
Non-trivial topological superconducting states become stable as a function of the charge density.
arXiv Detail & Related papers (2021-07-02T14:27:55Z) - Fano interference in quantum resonances from angle-resolved elastic
scattering [62.997667081978825]
We show that probing the angular dependence of the cross section allows us to unveil asymmetric Fano profiles in a single channel shape resonance.
We observe a shift in the peak of the resonance profile in the elastic collisions between metastable helium and deuterium molecules.
arXiv Detail & Related papers (2021-05-12T20:41:25Z) - Transmission spectra of the driven, dissipative Rabi model in the USC
regime [0.0]
We present theoretical transmission spectra of a strongly driven, damped, flux qubit coupled to a dissipative resonator.
Such a qubit-oscillator system constitutes the building block of superconducting circuit QED platforms.
arXiv Detail & Related papers (2021-04-29T16:58:52Z) - Superradiant phase transition in complex networks [62.997667081978825]
We consider a superradiant phase transition problem for the Dicke-Ising model.
We examine regular, random, and scale-free network structures.
arXiv Detail & Related papers (2020-12-05T17:40:53Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.