Spontaneous superradiant photon current
- URL: http://arxiv.org/abs/2402.15165v1
- Date: Fri, 23 Feb 2024 07:57:40 GMT
- Title: Spontaneous superradiant photon current
- Authors: Lei Qiao and Jiangbin Gong
- Abstract summary: This work reports the spontaneous emergence of a photon current in a class of spin-cavity systems.
Specifically, photons in a superradiant phase afforded by coherent photon-emitter interaction spontaneously flow from a cavity.
- Score: 3.9142816997810743
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work reports the spontaneous emergence of a photon current in a class of
spin-cavity systems, where an assemble of quantum emitters interact with
distinct photon modes confined in tunneling-coupled cavities. Specifically,
with necessary symmetry breaking, photons in a superradiant phase afforded by
coherent photon-emitter interaction spontaneously flow from a cavity with a
lower resonance frequency to a different cavity with a higher resonance
frequency. Theoretical analysis reveals that cavity dissipation is the key to
alter spin-cavity coherence, which then makes it possible to extract photons
from, and later return photons to the vaccum through the cavities. The
interplay between photon loss and emitter coherence hence sustains a
counter-intuitive steady current of photons between cavities without an
external pumping field.
Related papers
- Birefringent spin-photon interface generates polarization entanglement [0.0]
A spin-photon interface based on a singly charged quantum dot in a micropillar cavity allows for the creation of photonic entangled states.
We show that the concurrence of the spin-photon state equal to one and complete quantum dot population can be reached for a micropillar cavity with any degree of birefringence.
arXiv Detail & Related papers (2024-04-24T17:56:48Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Entangled Photons and Phonons via Inter-Modal Brillouin Scattering [0.0]
We explore the possibility of the formation of photon-phonon entangled states in nanoscale wires by exploiting stimulated inter-modal Brillouin scattering.
The appearance of entangled states can extend the use of nanowires, for example, those made of silicon, into quantum information processing.
arXiv Detail & Related papers (2022-12-16T07:40:59Z) - Two-photon emission in detuned resonance fluorescence [0.0]
We discuss two-photon correlations from the side peaks that are formed when a two-level system emitter is driven coherently.
We show that their combination leads to a neat picture compatible with perturbative two-photon scattering.
This should help to control, enhance and open new regimes of multiphoton emission.
arXiv Detail & Related papers (2022-10-07T17:59:38Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Correlations between cascaded photons from spatially localized
biexcitons in ZnSe [55.41644538483948]
We demonstrate a radiative cascade from the decay of a biexciton at an impurity-atom complex in aSe quantum well.
Our result establishes impurity atoms inSe as a potential platform for photonic quantum technologies using radiative cascades.
arXiv Detail & Related papers (2022-03-11T23:15:37Z) - Excite atom-photon bound state inside the coupled-resonator waveguide
coupled with a giant atom [1.5247768680767837]
We show that a bound state, where the light shows the localization effect and atom exhibits a subradiant decay time, can be excited by a propagating photon.
Our work provides an alternative method for actively localizing the photon in a modulated coupled-resonator waveguide system interacting with giant atom.
arXiv Detail & Related papers (2021-11-12T15:20:41Z) - Moir\'e-induced optical non-linearities: Single and multi-photon
resonances [0.0]
Moir'e excitons promise a new platform with which to generate and manipulate hybrid quantum phases of light and matter.
We show that the steady states exhibit a rich phase diagram with pronounced bi-stabilities governed by multi-photon resonances.
In the presence of an incoherent pumping of excitons we find that the system can realise one- and multi-photon lasers.
arXiv Detail & Related papers (2021-08-13T11:47:44Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.