Shaping Realities: Enhancing 3D Generative AI with Fabrication Constraints
- URL: http://arxiv.org/abs/2404.10142v2
- Date: Wed, 17 Apr 2024 02:33:32 GMT
- Title: Shaping Realities: Enhancing 3D Generative AI with Fabrication Constraints
- Authors: Faraz Faruqi, Yingtao Tian, Vrushank Phadnis, Varun Jampani, Stefanie Mueller,
- Abstract summary: Generative AI tools are becoming more prevalent in 3D modeling, enabling users to manipulate or create new models with text or images as inputs.
These methods focus on the aesthetic quality of the 3D models, refining them to look similar to the prompts provided by the user.
When creating 3D models intended for fabrication, designers need to trade-off the aesthetic qualities of a 3D model with their intended physical properties.
- Score: 36.65470465480772
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI tools are becoming more prevalent in 3D modeling, enabling users to manipulate or create new models with text or images as inputs. This makes it easier for users to rapidly customize and iterate on their 3D designs and explore new creative ideas. These methods focus on the aesthetic quality of the 3D models, refining them to look similar to the prompts provided by the user. However, when creating 3D models intended for fabrication, designers need to trade-off the aesthetic qualities of a 3D model with their intended physical properties. To be functional post-fabrication, 3D models have to satisfy structural constraints informed by physical principles. Currently, such requirements are not enforced by generative AI tools. This leads to the development of aesthetically appealing, but potentially non-functional 3D geometry, that would be hard to fabricate and use in the real world. This workshop paper highlights the limitations of generative AI tools in translating digital creations into the physical world and proposes new augmentations to generative AI tools for creating physically viable 3D models. We advocate for the development of tools that manipulate or generate 3D models by considering not only the aesthetic appearance but also using physical properties as constraints. This exploration seeks to bridge the gap between digital creativity and real-world applicability, extending the creative potential of generative AI into the tangible domain.
Related papers
- CLAY: A Controllable Large-scale Generative Model for Creating High-quality 3D Assets [43.315487682462845]
CLAY is a 3D geometry and material generator designed to transform human imagination into intricate 3D digital structures.
At its core is a large-scale generative model composed of a multi-resolution Variational Autoencoder (VAE) and a minimalistic latent Diffusion Transformer (DiT)
We demonstrate using CLAY for a range of controllable 3D asset creations, from sketchy conceptual designs to production ready assets with intricate details.
arXiv Detail & Related papers (2024-05-30T05:57:36Z) - Atlas3D: Physically Constrained Self-Supporting Text-to-3D for Simulation and Fabrication [50.541882834405946]
We introduce Atlas3D, an automatic and easy-to-implement text-to-3D method.
Our approach combines a novel differentiable simulation-based loss function with physically inspired regularization.
We verify Atlas3D's efficacy through extensive generation tasks and validate the resulting 3D models in both simulated and real-world environments.
arXiv Detail & Related papers (2024-05-28T18:33:18Z) - Progress and Prospects in 3D Generative AI: A Technical Overview
including 3D human [51.58094069317723]
This paper aims to provide a comprehensive overview and summary of the relevant papers published mostly during the latter half year of 2023.
It will begin by discussing the AI generated object models in 3D, followed by the generated 3D human models, and finally, the generated 3D human motions, culminating in a conclusive summary and a vision for the future.
arXiv Detail & Related papers (2024-01-05T03:41:38Z) - En3D: An Enhanced Generative Model for Sculpting 3D Humans from 2D
Synthetic Data [36.51674664590734]
We present En3D, an enhanced izable scheme for high-qualityd 3D human avatars.
Unlike previous works that rely on scarce 3D datasets or limited 2D collections with imbalance viewing angles and pose priors, our approach aims to develop a zero-shot 3D capable of producing 3D humans.
arXiv Detail & Related papers (2024-01-02T12:06:31Z) - Get3DHuman: Lifting StyleGAN-Human into a 3D Generative Model using
Pixel-aligned Reconstruction Priors [56.192682114114724]
Get3DHuman is a novel 3D human framework that can significantly boost the realism and diversity of the generated outcomes.
Our key observation is that the 3D generator can profit from human-related priors learned through 2D human generators and 3D reconstructors.
arXiv Detail & Related papers (2023-02-02T15:37:46Z) - GET3D: A Generative Model of High Quality 3D Textured Shapes Learned
from Images [72.15855070133425]
We introduce GET3D, a Generative model that directly generates Explicit Textured 3D meshes with complex topology, rich geometric details, and high-fidelity textures.
GET3D is able to generate high-quality 3D textured meshes, ranging from cars, chairs, animals, motorbikes and human characters to buildings.
arXiv Detail & Related papers (2022-09-22T17:16:19Z) - SMPLpix: Neural Avatars from 3D Human Models [56.85115800735619]
We bridge the gap between classic rendering and the latest generative networks operating in pixel space.
We train a network that directly converts a sparse set of 3D mesh vertices into photorealistic images.
We show the advantage over conventional differentiables both in terms of the level of photorealism and rendering efficiency.
arXiv Detail & Related papers (2020-08-16T10:22:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.