CLAY: A Controllable Large-scale Generative Model for Creating High-quality 3D Assets
- URL: http://arxiv.org/abs/2406.13897v1
- Date: Thu, 30 May 2024 05:57:36 GMT
- Title: CLAY: A Controllable Large-scale Generative Model for Creating High-quality 3D Assets
- Authors: Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu, Anqi Pang, Haoran Jiang, Wei Yang, Lan Xu, Jingyi Yu,
- Abstract summary: CLAY is a 3D geometry and material generator designed to transform human imagination into intricate 3D digital structures.
At its core is a large-scale generative model composed of a multi-resolution Variational Autoencoder (VAE) and a minimalistic latent Diffusion Transformer (DiT)
We demonstrate using CLAY for a range of controllable 3D asset creations, from sketchy conceptual designs to production ready assets with intricate details.
- Score: 43.315487682462845
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the realm of digital creativity, our potential to craft intricate 3D worlds from imagination is often hampered by the limitations of existing digital tools, which demand extensive expertise and efforts. To narrow this disparity, we introduce CLAY, a 3D geometry and material generator designed to effortlessly transform human imagination into intricate 3D digital structures. CLAY supports classic text or image inputs as well as 3D-aware controls from diverse primitives (multi-view images, voxels, bounding boxes, point clouds, implicit representations, etc). At its core is a large-scale generative model composed of a multi-resolution Variational Autoencoder (VAE) and a minimalistic latent Diffusion Transformer (DiT), to extract rich 3D priors directly from a diverse range of 3D geometries. Specifically, it adopts neural fields to represent continuous and complete surfaces and uses a geometry generative module with pure transformer blocks in latent space. We present a progressive training scheme to train CLAY on an ultra large 3D model dataset obtained through a carefully designed processing pipeline, resulting in a 3D native geometry generator with 1.5 billion parameters. For appearance generation, CLAY sets out to produce physically-based rendering (PBR) textures by employing a multi-view material diffusion model that can generate 2K resolution textures with diffuse, roughness, and metallic modalities. We demonstrate using CLAY for a range of controllable 3D asset creations, from sketchy conceptual designs to production ready assets with intricate details. Even first time users can easily use CLAY to bring their vivid 3D imaginations to life, unleashing unlimited creativity.
Related papers
- 3DTopia-XL: Scaling High-quality 3D Asset Generation via Primitive Diffusion [86.25111098482537]
We introduce 3DTopia-XL, a scalable native 3D generative model designed to overcome limitations of existing methods.
3DTopia-XL leverages a novel primitive-based 3D representation, PrimX, which encodes detailed shape, albedo, and material field into a compact tensorial format.
On top of the novel representation, we propose a generative framework based on Diffusion Transformer (DiT), which comprises 1) Primitive Patch Compression, 2) and Latent Primitive Diffusion.
We conduct extensive qualitative and quantitative experiments to demonstrate that 3DTopia-XL significantly outperforms existing methods in generating high-
arXiv Detail & Related papers (2024-09-19T17:59:06Z) - CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner [34.78919665494048]
CraftsMan can generate high-fidelity 3D geometries with highly varied shapes, regular mesh topologies, and detailed surfaces.
Our method achieves high efficacy in producing superior-quality 3D assets compared to existing methods.
arXiv Detail & Related papers (2024-05-23T18:30:12Z) - En3D: An Enhanced Generative Model for Sculpting 3D Humans from 2D
Synthetic Data [36.51674664590734]
We present En3D, an enhanced izable scheme for high-qualityd 3D human avatars.
Unlike previous works that rely on scarce 3D datasets or limited 2D collections with imbalance viewing angles and pose priors, our approach aims to develop a zero-shot 3D capable of producing 3D humans.
arXiv Detail & Related papers (2024-01-02T12:06:31Z) - Large-Vocabulary 3D Diffusion Model with Transformer [57.076986347047]
We introduce a diffusion-based feed-forward framework for synthesizing massive categories of real-world 3D objects with a single generative model.
We propose a novel triplane-based 3D-aware Diffusion model with TransFormer, DiffTF, for handling challenges via three aspects.
Experiments on ShapeNet and OmniObject3D convincingly demonstrate that a single DiffTF model achieves state-of-the-art large-vocabulary 3D object generation performance.
arXiv Detail & Related papers (2023-09-14T17:59:53Z) - Efficient 3D Articulated Human Generation with Layered Surface Volumes [131.3802971483426]
We introduce layered surface volumes (LSVs) as a new 3D object representation for articulated digital humans.
LSVs represent a human body using multiple textured layers around a conventional template.
They exhibit exceptional efficiency in GAN settings, where a 2D generator learns to synthesize the RGBA textures for the individual layers.
arXiv Detail & Related papers (2023-07-11T17:50:02Z) - Pushing the Limits of 3D Shape Generation at Scale [65.24420181727615]
We present a significant breakthrough in 3D shape generation by scaling it to unprecedented dimensions.
We have developed a model with an astounding 3.6 billion trainable parameters, establishing it as the largest 3D shape generation model to date, named Argus-3D.
arXiv Detail & Related papers (2023-06-20T13:01:19Z) - GET3D: A Generative Model of High Quality 3D Textured Shapes Learned
from Images [72.15855070133425]
We introduce GET3D, a Generative model that directly generates Explicit Textured 3D meshes with complex topology, rich geometric details, and high-fidelity textures.
GET3D is able to generate high-quality 3D textured meshes, ranging from cars, chairs, animals, motorbikes and human characters to buildings.
arXiv Detail & Related papers (2022-09-22T17:16:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.