論文の概要: Forensic Iris Image-Based Post-Mortem Interval Estimation
- arxiv url: http://arxiv.org/abs/2404.10172v1
- Date: Mon, 15 Apr 2024 23:01:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 18:41:41.603125
- Title: Forensic Iris Image-Based Post-Mortem Interval Estimation
- Title(参考訳): 法医学アイリス画像を用いたモーテム後間隔推定
- Authors: Rasel Ahmed Bhuiyan, Adam Czajka,
- Abstract要約: 死後の時間間隔 (PMI) は, 死亡から経過した時間数と相関する。
本稿では,法医学的虹彩画像から直接PMI推定を行う手法について述べる。
- 参考スコア(独自算出の注目度): 4.737519767218666
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Post-mortem iris recognition is an emerging application of iris-based human identification in a forensic setup. One factor that may be useful in conditioning iris recognition methods is the tissue decomposition level, which is correlated with the post-mortem interval (PMI), i.g., the number of hours that have elapsed since death. PMI, however, is not always available, and its precise estimation remains one of the core challenges in forensic examination. This paper presents the first known to us method of PMI estimation directly from forensic iris images. To assess the feasibility of the iris-based PMI estimation, convolutional neural networks-based models (VGG19, DenseNet121, ResNet152, and Inception_v3) were trained to predict the PMI from (a) near-infrared (NIR), (b) visible (RGB), and (c) multispectral forensic iris images. Models were evaluated following a 10-fold cross-validation in (S1) sample-disjoint, (S2) subject-disjoint, and (S3) cross-dataset scenarios. We found that using the multispectral data offers a spectacularly low mean absolute error (MAE) of approximately 3.5 hours in scenario (S1), a bit worse MAE of approximately 17.5 hours in scenario (S2), and an MAE of approximately 69.0 hours of in the scenario (S3). This suggests that if the environmental conditions are favorable (e.g., bodies are kept in low temperatures), forensic iris images provide features that are indicative of the PMI and can be automatically estimated. The source codes and model weights are made available with the paper.
- Abstract(参考訳): 死後虹彩認識は、法医学的な設定で虹彩をベースとした人間の識別の新たな応用である。
虹彩認識方法の条件付けに有用である1つの要因は、組織分解レベルであり、これは死後の間隔(PMI)、すなわち、死後経過した時間数と相関している。
しかし、PMIは必ずしも利用可能ではなく、その正確な推定は法医学的な検査における主要な課題の1つである。
本稿では,法医学的虹彩画像から直接PMI推定を行う手法について述べる。
虹彩を用いたPMI推定の可能性を評価するため、畳み込みニューラルネットワークモデル(VGG19、DenseNet121、ResNet152、Inception_v3)をトレーニングし、PMIを予測した。
(a)近赤外(NIR)
(b)可視(RGB)、及び
(c)多スペクトル法医学的虹彩画像。
モデルは, (S1) サンプル・ディスジョイント, (S2) 対象・ディスジョイント, (S3) クロスデータセットシナリオにおいて10倍のクロスバリデーションで評価された。
マルチスペクトルデータを用いることで、シナリオで約3.5時間(S1)、シナリオで約17.5時間(S2)、シナリオで約69.0時間(S3)という驚くほど低い平均絶対誤差(MAE)が得られることがわかった。
これは、環境条件が好ましい場合(例えば、体が低温で保たれる場合)、法医学的虹彩画像は、PMIを示す特徴を提供し、自動的に推定可能であることを示唆している。
ソースコードとモデルの重み付けは、この論文で利用可能である。
関連論文リスト
- InstantSplat: Sparse-view SfM-free Gaussian Splatting in Seconds [91.77050739918037]
スパース画像からの新しいビュー合成(NVS)は3次元コンピュータビジョンにおいて大きく進歩している。
これはStructure-from-Motion (SfM) を用いたカメラパラメータの正確な初期推定に依存する
本研究では,スパースビュー画像から堅牢なNVSを向上するための,新規で効率的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-29T17:29:58Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - Forensic Iris Image Synthesis [5.596752018167751]
死後虹彩認識は、法医学的な設定で虹彩をベースとした人間の識別の新たな応用である。
本論文は, 運動後虹彩サンプルの最大データセットに基づいて訓練された, 条件付きスタイルGANに基づく虹彩合成モデルを提供する。
論文 参考訳(メタデータ) (2023-12-07T08:28:41Z) - Fast refacing of MR images with a generative neural network lowers
re-identification risk and preserves volumetric consistency [5.040145546652933]
本稿では,3次元条件生成対向ネットワークに基づく3次元T1重み付きスキャンのための顔の匿名化手法を提案する。
提案手法は顔生成に9秒を要し, 顔の変形後の一貫した後処理結果の復元に適している。
論文 参考訳(メタデータ) (2023-05-26T13:34:14Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - Haven't I Seen You Before? Assessing Identity Leakage in Synthetic
Irises [4.142375560633827]
本稿では, GANトレーニングプロセスの様々な点における3つのアイリスマッチングの解析を行い, 実際のトレーニングサンプルが生成過程を通じて漏洩する危険のある場所と時期を診断する。
以上の結果から,ほとんどの合成サンプルは同一性漏洩の兆候を示していないが,生成したサンプルのごく一部は,ほぼ完璧に一致していることがわかった。
論文 参考訳(メタデータ) (2022-11-03T00:34:47Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - RDCNet: Instance segmentation with a minimalist recurrent residual
network [0.14999444543328289]
我々は、リカレント拡張畳み込みネットワーク(RDCNet)と呼ばれる最小限のリカレントネットワークを提案する。
RDCNetは、その出力を反復的に洗練し、解釈可能な中間予測を生成する共有スタック拡張畳み込み(sSDC)層で構成されている。
我々は,H&Eスライドの核セグメンテーション,光シート蛍光顕微鏡による3次元異方性スタック,およびトップビュー画像の葉セグメンテーションの3つのタスクに対して,その汎用性を実証した。
論文 参考訳(メタデータ) (2020-10-02T13:36:45Z) - Enhancing Fiber Orientation Distributions using convolutional Neural
Networks [0.0]
商業的に取得したMRIにおけるFODの改善について学ぶ。
パッチベースの3次元畳み込みニューラルネットワーク(CNN)の評価
本手法により,シングルシェルdMRI取得プロトコル上でのCDDモデル推定が可能となる。
論文 参考訳(メタデータ) (2020-08-12T16:06:25Z) - AutoHR: A Strong End-to-end Baseline for Remote Heart Rate Measurement
with Neural Searching [76.4844593082362]
既存のエンド・ツー・エンドのネットワークが難易度が低い理由を考察し,アーキテクチャ・サーチ(NAS)を用いたリモートHR計測のための強力なベースラインを確立する。
総合的な実験は、時間内テストとクロスデータセットテストの両方で3つのベンチマークデータセットで実施される。
論文 参考訳(メタデータ) (2020-04-26T05:43:21Z) - Spectrum Translation for Cross-Spectral Ocular Matching [59.17685450892182]
バイオメトリックスでは、特に眼領域において、クロススペクトル検証が大きな問題となっている。
近赤外画像と視覚光画像のスペクトル変換におけるコンディショナル・ディバイサル・ネットワークの利用について検討した。
論文 参考訳(メタデータ) (2020-02-14T19:30:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。