Redistribute Ensemble Training for Mitigating Memorization in Diffusion Models
- URL: http://arxiv.org/abs/2502.09434v1
- Date: Thu, 13 Feb 2025 15:56:44 GMT
- Title: Redistribute Ensemble Training for Mitigating Memorization in Diffusion Models
- Authors: Xiaoliu Guan, Yu Wu, Huayang Huang, Xiao Liu, Jiaxu Miao, Yi Yang,
- Abstract summary: Diffusion models are known for their tremendous ability to generate high-quality samples.
Recent methods for memory mitigation have primarily addressed the issue within the context of the text modality.
We propose a novel method for diffusion models from the perspective of visual modality, which is more generic and fundamental for mitigating memorization.
- Score: 31.92526915009259
- License:
- Abstract: Diffusion models, known for their tremendous ability to generate high-quality samples, have recently raised concerns due to their data memorization behavior, which poses privacy risks. Recent methods for memory mitigation have primarily addressed the issue within the context of the text modality in cross-modal generation tasks, restricting their applicability to specific conditions. In this paper, we propose a novel method for diffusion models from the perspective of visual modality, which is more generic and fundamental for mitigating memorization. Directly exposing visual data to the model increases memorization risk, so we design a framework where models learn through proxy model parameters instead. Specially, the training dataset is divided into multiple shards, with each shard training a proxy model, then aggregated to form the final model. Additionally, practical analysis of training losses illustrates that the losses for easily memorable images tend to be obviously lower. Thus, we skip the samples with abnormally low loss values from the current mini-batch to avoid memorizing. However, balancing the need to skip memorization-prone samples while maintaining sufficient training data for high-quality image generation presents a key challenge. Thus, we propose IET-AGC+, which redistributes highly memorizable samples between shards, to mitigate these samples from over-skipping. Furthermore, we dynamically augment samples based on their loss values to further reduce memorization. Extensive experiments and analysis on four datasets show that our method successfully reduces memory capacity while maintaining performance. Moreover, we fine-tune the pre-trained diffusion models, e.g., Stable Diffusion, and decrease the memorization score by 46.7\%, demonstrating the effectiveness of our method. Code is available in: https://github.com/liuxiao-guan/IET_AGC.
Related papers
- CPSample: Classifier Protected Sampling for Guarding Training Data During Diffusion [58.64822817224639]
Diffusion models have a tendency to exactly replicate their training data, especially when trained on small datasets.
We present CPSample, a method that modifies the sampling process to prevent training data replication while preserving image quality.
CPSample achieves FID scores of 4.97 and 2.97 on CIFAR-10 and CelebA-64, respectively, without producing exact replicates of the training data.
arXiv Detail & Related papers (2024-09-11T05:42:01Z) - Detecting, Explaining, and Mitigating Memorization in Diffusion Models [49.438362005962375]
We introduce a straightforward yet effective method for detecting memorized prompts by inspecting the magnitude of text-conditional predictions.
Our proposed method seamlessly integrates without disrupting sampling algorithms, and delivers high accuracy even at the first generation step.
Building on our detection strategy, we unveil an explainable approach that shows the contribution of individual words or tokens to memorization.
arXiv Detail & Related papers (2024-07-31T16:13:29Z) - Iterative Ensemble Training with Anti-Gradient Control for Mitigating Memorization in Diffusion Models [20.550324116099357]
Diffusion models are known for their tremendous ability to generate novel and high-quality samples.
Recent approaches for memory mitigation either only focused on the text modality problem in cross-modal generation tasks or utilized data augmentation strategies.
We propose a novel training framework for diffusion models from the perspective of visual modality, which is more generic and fundamental for mitigating memorization.
arXiv Detail & Related papers (2024-07-22T02:19:30Z) - Memorized Images in Diffusion Models share a Subspace that can be Located and Deleted [15.162296378581853]
Large-scale text-to-image diffusion models excel in generating high-quality images from textual inputs.
Concerns arise as research indicates their tendency to memorize and replicate training data.
Efforts within the text-to-image community to address memorization explore causes such as data duplication, replicated captions, or trigger tokens.
arXiv Detail & Related papers (2024-06-01T15:47:13Z) - Consistent Diffusion Meets Tweedie: Training Exact Ambient Diffusion Models with Noisy Data [74.2507346810066]
Ambient diffusion is a recently proposed framework for training diffusion models using corrupted data.
We present the first framework for training diffusion models that provably sample from the uncorrupted distribution given only noisy training data.
arXiv Detail & Related papers (2024-03-20T14:22:12Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z) - GSURE-Based Diffusion Model Training with Corrupted Data [35.56267114494076]
We propose a novel training technique for generative diffusion models based only on corrupted data.
We demonstrate our technique on face images as well as Magnetic Resonance Imaging (MRI)
arXiv Detail & Related papers (2023-05-22T15:27:20Z) - Reducing Training Sample Memorization in GANs by Training with
Memorization Rejection [80.0916819303573]
We propose rejection memorization, a training scheme that rejects generated samples that are near-duplicates of training samples during training.
Our scheme is simple, generic and can be directly applied to any GAN architecture.
arXiv Detail & Related papers (2022-10-21T20:17:50Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
Replay in neural networks involves training on sequential data with memorized samples, which counteracts forgetting of previous behavior caused by non-stationarity.
We present a method where these auxiliary samples are generated on the fly, given only the model that is being trained for the assessed objective.
Instead the implicit memory of learned samples within the assessed model itself is exploited.
arXiv Detail & Related papers (2020-06-22T15:07:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.