Calibration of the Cryogenic Measurement System of a Resonant Haloscope Cavity
- URL: http://arxiv.org/abs/2404.10264v1
- Date: Tue, 16 Apr 2024 03:34:39 GMT
- Title: Calibration of the Cryogenic Measurement System of a Resonant Haloscope Cavity
- Authors: Dong He, Jie Fan, Xin Gao, Yu Gao, Nick Houston, Zhongqing Ji, Yirong Jin, Chuang Li, Jinmian Li, Tianjun Li, Shi-hang Liu, Jia-Shu Niu, Zhihui Peng, Liang Sun, Zheng Sun, Jia Wang, Puxian Wei, Lina Wu, Zhongchen Xiang, Qiaoli Yang, Chi Zhang, Wenxing Zhang, Xin Zhang, Dongning Zheng, Ruifeng Zheng, Jian-yong Zhou,
- Abstract summary: We demonstrate a 7.138 GHz copper cavity with a loaded quality factor $Q_l=104$, operated at 22 mK temperature based on a dilution refrigerator.
Our readout system consists of High Electron Mobility Transistors as cryogenic amplifiers at 4 K, plus room-temperature amplifiers and a spectrum analyzer for signal power detection.
- Score: 15.693238765961619
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Possible light bosonic dark matter interactions with the Standard Model photon have been searched by microwave resonant cavities. In this paper, we demonstrate the cryogenic readout system calibration of a 7.138 GHz copper cavity with a loaded quality factor $Q_l=10^4$, operated at 22 mK temperature based on a dilution refrigerator. Our readout system consists of High Electron Mobility Transistors as cryogenic amplifiers at 4 K, plus room-temperature amplifiers and a spectrum analyzer for signal power detection. We test the system with a superconducting two-level system as a single-photon source in the microwave frequency regime and report an overall 95.6 dB system gain and -71.4 dB attenuation in the cavity's input channel. The effective noise temperature of the measurement system is 7.5 K.
Related papers
- Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Optical Bias and Cryogenic Laser Readout of a Multipixel Superconducting Nanowire Single Photon Detector [0.9374652839580183]
Cryogenic opto-electronic interconnects are gaining increasing interest as a means to control and read out cryogenic electronic components.
We demonstrate the opto-electronic bias and readout of a commercial four-pixel superconducting nanowire single-photon detector array.
This demonstrates the potential of high-bandwidth, low noise, and low heat load opto-electronic interconnects for scalable cryogenic signal processing and transmission.
arXiv Detail & Related papers (2024-03-21T10:33:12Z) - Site-Selective Enhancement of Superconducting Nanowire Single-Photon
Detectors via Local Helium Ion Irradiation [0.0]
We utilize local helium ion irradiation to tune single-photon detection efficiency, switching current, and critical temperature of individual devices on the same chip.
For 12nm thick highly absorptive SNSPDs, we observe an increase of the system detection efficiency from $ 0.05,%$ to $(55.3 pm 1.1),%$ following irradiation.
Investigations of the scaling of superconducting thin film properties with irradiation up to a fluence of $2600 revealed an increase of sheet resistance and a decrease of critical temperature towards high fluences.
arXiv Detail & Related papers (2023-05-23T15:51:13Z) - Millikelvin measurements of permittivity and loss tangent of lithium
niobate [50.591267188664666]
Lithium niobate is an electro-optic material with many applications in microwave signal processing, communication, quantum sensing, and quantum computing.
We present findings on evaluating the complex electromagnetic permittivity of lithium niobate at millikelvin temperatures.
arXiv Detail & Related papers (2023-02-24T22:05:42Z) - Phononically shielded photonic-crystal mirror membranes for cavity
quantum optomechanics [48.7576911714538]
We present a highly reflective, sub-wavelength-thick membrane resonator featuring high mechanical quality factor.
We construct a Fabry-Perot-type optical cavity, with the membrane forming one terminating mirror.
We demonstrate optomechanical sideband cooling to mK-mode temperatures, starting from room temperature.
arXiv Detail & Related papers (2022-12-23T04:53:04Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Near-monochromatic tuneable cryogenic niobium electron field emitter [48.7576911714538]
We describe electron field emission from a monocrystalline, superconducting niobium nanotip at a temperature of 5.9 K.
The emitted electron energy spectrum reveals an ultra-narrow distribution down to 16 meV.
This source will decrease the impact of lens aberration and enable new modes in low-energy electron microscopy, electron energy loss spectroscopy, and high-resolution vibrational spectroscopy.
arXiv Detail & Related papers (2022-05-11T20:46:21Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Characterizing cryogenic amplifiers with a matched temperature-variable
noise source [0.0]
We present a cryogenic microwave noise source with a characteristic impedance of 50 $Omega$, which can be installed in a coaxial line of a cryostat.
The bath temperature of the noise source is continuously variable between 0.1 K and 5 K without causing significant back-action heating on the sample space.
We observe system noise temperatures as low as $680+20_-200$ mK at 5.7 GHz corresponding to $1.5+0.1_-0.7$ excess photons.
arXiv Detail & Related papers (2020-09-07T10:52:09Z) - Primary thermometry of propagating microwaves in the quantum regime [0.0]
We propose and experimentally demonstrate thermometry of propagating microwaves using a transmon-type superconducting circuit.
Our device operates continuously, with a sensitivity down to $4times 10-4$ photons/$sqrtmboxHz$ and a bandwidth of 40 MHz.
This thermometry scheme can find applications in benchmarking and characterization of cryogenic microwave setups, temperature measurements in hybrid quantum systems, and quantum thermodynamics.
arXiv Detail & Related papers (2020-03-30T14:48:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.