Primary thermometry of propagating microwaves in the quantum regime
- URL: http://arxiv.org/abs/2003.13522v1
- Date: Mon, 30 Mar 2020 14:48:30 GMT
- Title: Primary thermometry of propagating microwaves in the quantum regime
- Authors: Marco Scigliuzzo, Andreas Bengtsson, Jean-Claude Besse, Andreas
Wallraff, Per Delsing, and Simone Gasparinetti
- Abstract summary: We propose and experimentally demonstrate thermometry of propagating microwaves using a transmon-type superconducting circuit.
Our device operates continuously, with a sensitivity down to $4times 10-4$ photons/$sqrtmboxHz$ and a bandwidth of 40 MHz.
This thermometry scheme can find applications in benchmarking and characterization of cryogenic microwave setups, temperature measurements in hybrid quantum systems, and quantum thermodynamics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to control and measure the temperature of propagating microwave
modes down to very low temperatures is indispensable for quantum information
processing, and may open opportunities for studies of heat transport at the
nanoscale, also in the quantum regime. Here we propose and experimentally
demonstrate primary thermometry of propagating microwaves using a transmon-type
superconducting circuit. Our device operates continuously, with a sensitivity
down to $4\times 10^{-4}$ photons/$\sqrt{\mbox{Hz}}$ and a bandwidth of 40 MHz.
We measure the thermal occupation of the modes of a highly attenuated coaxial
cable in a range of 0.001 to 0.4 thermal photons, corresponding to a
temperature range from 35 mK to 210 mK at a frequency around 5 GHz. To increase
the radiation temperature in a controlled fashion, we either inject calibrated,
wideband digital noise, or heat the device and its environment. This
thermometry scheme can find applications in benchmarking and characterization
of cryogenic microwave setups, temperature measurements in hybrid quantum
systems, and quantum thermodynamics.
Related papers
- Enhanced Imaging of Electronic Hot Spots Using Quantum Squeezed Light [0.0]
thermoreflective imaging is being used to perform precise temporal and spatial imaging of heat on wires and semiconductor materials.
We apply quantum squeezed light to perform thermoreflective imaging on micro-wires, surpassing the shot-noise limit of classical approaches.
arXiv Detail & Related papers (2024-03-22T16:55:46Z) - Room temperature single-photon terahertz detection with thermal Rydberg
atoms [8.625885970682884]
Single-photon terahertz (THz) detection is one of the most demanding technology for a variety of fields and could lead to many breakthroughs.
Here, we demonstrate, for the first time, the room temperature THz detector at single-photon levels based on nonlinear wave mixing in thermal Rydberg atomic vapor.
arXiv Detail & Related papers (2024-03-09T08:30:35Z) - Tailoring coherent microwave emission from a solid-state hybrid system
for room-temperature microwave quantum electronics [8.898365687672815]
We report on a solid-state hybrid system capable of coherent microwave quantum amplification and oscillation at X band via the masing process at room temperature.
By incorporating external driving and active dissipation control into the hybrid system, we achieve efficient tuning of the maser emission characteristics at around 9.4 GHz.
Our work highlights opportunities for optimizing emerging solid-state masers for quantum information processing and communication.
arXiv Detail & Related papers (2023-12-25T05:51:47Z) - An anti-maser for quantum-limited cooling of a microwave cavity [58.720142291102135]
We experimentally demonstrate how to generate a state in condensed matter at moderate cryogenic temperatures.
This state is then used to efficiently remove microwave photons from a cavity.
Such an "anti-maser" device could be extremely beneficial for applications that would normally require cooling to millikelvin temperatures.
arXiv Detail & Related papers (2023-07-24T11:12:29Z) - Millikelvin measurements of permittivity and loss tangent of lithium
niobate [50.591267188664666]
Lithium niobate is an electro-optic material with many applications in microwave signal processing, communication, quantum sensing, and quantum computing.
We present findings on evaluating the complex electromagnetic permittivity of lithium niobate at millikelvin temperatures.
arXiv Detail & Related papers (2023-02-24T22:05:42Z) - A highly-sensitive broadband superconducting thermoelectric
single-photon detector [62.997667081978825]
A thermoelectric detector (TED) converts a finite temperature difference caused by the absorption of a single photon into an open circuit thermovoltage.
Our TED is able to reveal single-photons of frequency ranging from about 15 GHz to about 150 PHz depending on the chosen design and materials.
arXiv Detail & Related papers (2023-02-06T17:08:36Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Bench-top Cooling of a Microwave Mode using an Optically Pumped Spin
Refrigerator [1.8922128824659967]
We experimentally remove thermal photons from a microwave mode at 1.45 GHz.
The noise temperature of the microwave mode dropped to $50+18_-32$ K.
We identify the system as a narrow-band yet extremely convenient platform for realizing low-noise detectors, quantum memory and quantum-enhanced machines.
arXiv Detail & Related papers (2021-04-01T06:07:37Z) - A robust fiber-based quantum thermometer coupled with nitrogen-vacancy
centers [29.359306535600815]
We present a robust fiber-based quantum thermometer which can significantly isolate the magnetic field noise and microwave power shift.
With a frequency modulation scheme, we realize the temperature measurement by detecting the variation of the sharp-dip in the zero-field optically detected magnetic resonance spectrum.
arXiv Detail & Related papers (2020-04-09T03:24:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.