論文の概要: Sparse Attention Regression Network Based Soil Fertility Prediction With Ummaso
- arxiv url: http://arxiv.org/abs/2404.10274v2
- Date: Tue, 10 Sep 2024 07:21:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 23:13:57.708029
- Title: Sparse Attention Regression Network Based Soil Fertility Prediction With Ummaso
- Title(参考訳): Ummasoを用いたスパークアテンション回帰ネットワークによる土壌肥大予測
- Authors: R V Raghavendra Rao, U Srinivasulu Reddy,
- Abstract要約: 主な目的は、不均一なデータ分布の影響を克服し、土壌肥育モデルの予測精度を改善することである。
導入されたモデルはスパースアテンションレグレッションを使用しており、不均衡なデータセットから関連する機能を効果的に取り入れている。
提案モデルでは,優れた性能指標が得られ,予測精度は98%に達した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The challenge of imbalanced soil nutrient datasets significantly hampers accurate predictions of soil fertility. To tackle this, a new method is suggested in this research, combining Uniform Manifold Approximation and Projection (UMAP) with Least Absolute Shrinkage and Selection Operator (LASSO). The main aim is to counter the impact of uneven data distribution and improve soil fertility models' predictive precision. The model introduced uses Sparse Attention Regression, effectively incorporating pertinent features from the imbalanced dataset. UMAP is utilized initially to reduce data complexity, unveiling hidden structures and important patterns. Following this, LASSO is applied to refine features and enhance the model's interpretability. The experimental outcomes highlight the effectiveness of the UMAP and LASSO hybrid approach. The proposed model achieves outstanding performance metrics, reaching a predictive accuracy of 98%, demonstrating its capability in accurate soil fertility predictions. Additionally, it showcases a Precision of 91.25%, indicating its adeptness in identifying fertile soil instances accurately. The Recall metric stands at 90.90%, emphasizing the model's ability to capture true positive cases effectively.
- Abstract(参考訳): 不均衡な土壌栄養データセットの課題は、土壌の肥育率の正確な予測を著しく妨げている。
そこで本研究では,一様多様体近似と投影(UMAP)と最小絶対収縮・選択演算子(LASSO)を組み合わせた新しい手法を提案する。
主な目的は、不均一なデータ分布の影響を克服し、土壌肥育モデルの予測精度を改善することである。
導入されたモデルはスパースアテンションレグレッションを使用しており、不均衡なデータセットから関連する機能を効果的に取り入れている。
UMAPは最初、データ複雑さを減らし、隠れた構造と重要なパターンを明らかにするために使われる。
その後、LASSOは特徴を洗練し、モデルの解釈可能性を高める。
実験結果は、UMAPとLASSOハイブリッドアプローチの有効性を強調している。
提案モデルでは,土壌肥大度予測の精度を98%に向上し,土壌肥大度予測の精度を示す。
さらに、91.25%の精度を示し、肥料土壌のインスタンスを正確に識別する能力を示している。
リコール計量は90.90%であり、モデルが正のケースを効果的に捉える能力を強調している。
関連論文リスト
- Advancing Cross-Domain Generalizability in Face Anti-Spoofing: Insights, Design, and Metrics [10.631157315662607]
本稿では,ゼロショットデータ領域の一般化におけるアンチ・スプーフィング性能の向上に向けた新たな視点を提案する。
従来のフレームワイドのスプーフィング予測に先立ち、ビデオワイドの予測のためにフレームレベルの確率を集約するニュアンス付き計量計算を導入する。
最終モデルは、データセット全体で既存の最先端メソッドよりも優れています。
論文 参考訳(メタデータ) (2024-06-18T04:15:22Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
低ランク近似技術は、微調整された大規模言語モデルのデファクトスタンダードとなっている。
本稿では,これらの手法が初期訓練済みデータ分布から微調整データセットのシフトを捉える上での有効性について検討する。
低ランク微調整は好ましくない偏見や有害な振る舞いを必然的に保存することを示す。
論文 参考訳(メタデータ) (2024-05-28T20:43:53Z) - C-XGBoost: A tree boosting model for causal effect estimation [8.246161706153805]
因果効果推定は、平均処理効果と、治療の条件平均処理効果を、利用可能なデータから得られる結果に推定することを目的としている。
本稿では,C-XGBoost という新たな因果推論モデルを提案する。
論文 参考訳(メタデータ) (2024-03-31T17:43:37Z) - Supervised Contrastive Learning based Dual-Mixer Model for Remaining
Useful Life Prediction [3.081898819471624]
Remaining Useful Life (RUL)予測は、現在の予測モーメントからデバイスの完全な障害までの残時間を正確に見積もることを目的としている。
従来のRUL予測手法における時間的特徴と空間的特徴の厳密結合の欠点を克服するため,Dual-Mixerモデルと呼ばれる空間的時間的特徴抽出器を提案する。
提案手法の有効性は,C-MAPSSデータセットに関する他の最新の研究結果との比較により検証した。
論文 参考訳(メタデータ) (2024-01-29T14:38:44Z) - Test-Time Adaptation Induces Stronger Accuracy and Agreement-on-the-Line [65.14099135546594]
最近のテスト時間適応 (TTA) 法は, モデルに非常に弱い相関関係を示すシフトであっても, ACL と AGL の傾向を大幅に強化する。
この結果から,TTAとAGLに基づく推定手法を組み合わせることで,より広い分布シフトの集合に対する高精度なモデルOOD性能を推定できることが示唆された。
論文 参考訳(メタデータ) (2023-10-07T23:21:25Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
本研究では,リンゴ樹の合成データセットを生成するための安定拡散2.1-baseの有用性について検討する。
我々は、現実世界のリンゴ検出データセットでリンゴを予測するために、YOLOv5mオブジェクト検出モデルを訓練する。
その結果、実世界の画像でトレーニングされたベースラインモデルと比較して、生成データでトレーニングされたモデルはわずかに性能が劣っていることがわかった。
論文 参考訳(メタデータ) (2023-06-20T09:46:01Z) - Toward Fair Facial Expression Recognition with Improved Distribution
Alignment [19.442685015494316]
本稿では,表情認識(FER)モデルにおけるバイアスを軽減する新しい手法を提案する。
本手法は、FERモデルによる埋め込みにおいて、性別、年齢、人種などの機密属性情報を低減することを目的としている。
ferモデルにおいて、魅力の概念を重要な感度属性として分析し、FERモデルがより魅力的な顔に対するバイアスを実際に示できることを実証する。
論文 参考訳(メタデータ) (2023-06-11T14:59:20Z) - Confidence and Dispersity Speak: Characterising Prediction Matrix for
Unsupervised Accuracy Estimation [51.809741427975105]
この研究は、ラベルを使わずに、分散シフト下でのモデルの性能を評価することを目的としている。
我々は、両方の特性を特徴付けるのに有効であることが示されている核規範を用いる。
核の基準は既存の手法よりも正確で堅牢であることを示す。
論文 参考訳(メタデータ) (2023-02-02T13:30:48Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。