論文の概要: LLM-Powered Test Case Generation for Detecting Bugs in Plausible Programs
- arxiv url: http://arxiv.org/abs/2404.10304v2
- Date: Sat, 31 May 2025 10:23:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-03 20:53:52.807111
- Title: LLM-Powered Test Case Generation for Detecting Bugs in Plausible Programs
- Title(参考訳): 可塑性プログラムにおけるバグ検出のためのLCMを用いたテストケース生成
- Authors: Kaibo Liu, Zhenpeng Chen, Yiyang Liu, Jie M. Zhang, Mark Harman, Yudong Han, Yun Ma, Yihong Dong, Ge Li, Gang Huang,
- Abstract要約: TrickCatcherは、可算プログラムでバグを発見するためのテストケースを生成する。
TrickCatcherは1.80x、2.65x、1.66xのリコール、精度、F1スコアを達成する。
- 参考スコア(独自算出の注目度): 37.48856389469826
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting tricky bugs in plausible programs, those that pass existing test suites yet still contain bugs, remains a significant challenge in software testing. To address this problem, we propose TrickCatcher, an LLM-powered approach to generating test cases for uncovering bugs in plausible programs. TrickCatcher operates in three stages: First, it uses an LLM to generate program variants based on the program under test (PUT) and its specification. Second, it employs an LLM to construct an input generator from the specification for producing test inputs. Finally, these inputs are executed on both the PUT and its program variants to detect inconsistencies in their outputs. We evaluate TrickCatcher on two datasets, TrickyBugs and EvalPlus, which include 366 human-written and 151 AI-generated plausible programs with tricky bugs. TrickCatcher achieves recall, precision, and F1 scores that are 1.80x, 2.65x, and 1.66x those of the state-of-the-art baselines, respectively. Code and data used are available at https://github.com/RinCloud/TrickCatcher.
- Abstract(参考訳): 既存のテストスイートをパスするが、まだバグを含んでいる、もっともらしいプログラムのトリッキーなバグを検出することは、ソフトウェアテストにおいて依然として大きな課題である。
この問題に対処するため,LLM を利用したテストケース生成手法である TrickCatcher を提案する。
TrickCatcherは以下の3つの段階で動作する。 まず、テスト中のプログラム(PUT)とその仕様に基づいてプログラム変種を生成するためにLLMを使用する。
第2に、LLMを使用して、テスト入力を生成するための仕様から入力ジェネレータを構築する。
最後に、これらの入力はPUTとプログラムの変種の両方で実行され、出力の不整合を検出する。
TrickCatcherをTrickyBugsとEvalPlusの2つのデータセットで評価した。
TrickCatcherはリコール、精度、F1スコアをそれぞれ1.80倍、2.65倍、1.66倍の最先端のベースラインで達成する。
使用するコードとデータはhttps://github.com/RinCloud/TrickCatcher.comで公開されている。
関連論文リスト
- LLM-based Unit Test Generation for Dynamically-Typed Programs [16.38145000434927]
TypeTestは、ベクトルベースのRetrieval-Augmented Generationシステムを通じて、テスト生成における型正しさを高める新しいフレームワークである。
125の現実世界のPythonモジュールの評価において、TypeTestは平均で86.6%、ブランチで76.8%を獲得し、それぞれ5.4%、9.3%の最先端ツールを上回った。
論文 参考訳(メタデータ) (2025-03-18T08:07:17Z) - Mutation Testing via Iterative Large Language Model-Driven Scientific Debugging [10.334617290353192]
我々は,Large Language Models (LLM) が変異体に対するテストを生成する上で,科学的計算が有効かどうかを評価する。
LLMは、より良い障害検出とカバレッジを持つテストを生成する上で、Pynguinを一貫して上回っている。
重要なことは、テストケースの反復的な改善が高品質なテストスイートを実現する上で重要であるということだ。
論文 参考訳(メタデータ) (2025-03-11T08:47:13Z) - Learning to Generate Unit Tests for Automated Debugging [52.63217175637201]
ユニットテスト(UT)は、コードの正確性を評価するだけでなく、大きな言語モデル(LLM)にフィードバックを提供する上でも重要な役割を果たします。
提案するUTGenは,LLMに対して,予測出力とともにエラーを示す単体テスト入力を生成することを教える。
UTGen は他の LLM ベースラインを7.59% 上回っていることを示す。
論文 参考訳(メタデータ) (2025-02-03T18:51:43Z) - VALTEST: Automated Validation of Language Model Generated Test Cases [0.7059472280274008]
大規模言語モデル(LLM)は、ソフトウェアテストの自動化、特に単体テストケースの生成において大きな可能性を証明している。
本稿では,トークンの確率を利用してLLMが生成したテストケースを自動的に検証する新しいフレームワークVALTESTを紹介する。
論文 参考訳(メタデータ) (2024-11-13T00:07:32Z) - Do LLMs generate test oracles that capture the actual or the expected program behaviour? [7.772338538073763]
大きな言語モデル(LLM)は、開発者のようなコードやテストケースを生成するために、膨大な量のデータに基づいて訓練されています。
この調査には、開発者によって書かれ、自動生成されるテストケースと、24のオープンソースJavaリポジトリのオーラクルが含まれている。
LLMは正しいオーラクルを分類するよりもテストオーラクルを生成する方が優れており、コードが有意義なテスト名や変数名を含む場合、よりよいテストオーラクルを生成することができる。
論文 参考訳(メタデータ) (2024-10-28T15:37:06Z) - SYNTHEVAL: Hybrid Behavioral Testing of NLP Models with Synthetic CheckLists [59.08999823652293]
我々は,NLPモデルの包括的評価のために,SyntheVALを提案する。
最後の段階では、人間の専門家が困難な例を調査し、手動でテンプレートを設計し、タスク固有のモデルが一貫して示す障害の種類を特定します。
我々は、感情分析と有害言語検出という2つの分類課題にSynTHEVALを適用し、これらの課題における強力なモデルの弱点を特定するのに、我々のフレームワークが有効であることを示す。
論文 参考訳(メタデータ) (2024-08-30T17:41:30Z) - Improving LLM-based Unit test generation via Template-based Repair [8.22619177301814]
単体テストは個々のプログラムユニットのバグを検出するのに不可欠だが、時間と労力を消費する。
大規模言語モデル(LLM)は、顕著な推論と生成能力を示している。
本稿では,新しい単体テスト生成法であるTestARTを提案する。
論文 参考訳(メタデータ) (2024-08-06T10:52:41Z) - Test Oracle Automation in the era of LLMs [52.69509240442899]
大規模言語モデル(LLM)は、多様なソフトウェアテストタスクに取り組むのに顕著な能力を示した。
本研究の目的は, 各種のオラクル生成時に生じる課題とともに, LLMs によるオラクルの自動化の可能性について検討することである。
論文 参考訳(メタデータ) (2024-05-21T13:19:10Z) - Test-Time Self-Adaptive Small Language Models for Question Answering [63.91013329169796]
ラベルのないテストデータのみを用いて、より小さな自己適応型LMの能力を示し、検討する。
提案した自己適応戦略は,ベンチマークQAデータセットの大幅な性能向上を示す。
論文 参考訳(メタデータ) (2023-10-20T06:49:32Z) - Effective Test Generation Using Pre-trained Large Language Models and
Mutation Testing [13.743062498008555]
大規模言語モデル(LLM)が生成するテストケースの有効性を,バグの発見の観点から改善するための MuTAP を導入する。
MuTAPは、プログラム・アンダー・テスト(PUT)の自然言語記述がない場合に有効なテストケースを生成することができる
提案手法は, 最大28%の人書きコードスニペットを検出できることを示す。
論文 参考訳(メタデータ) (2023-08-31T08:48:31Z) - ALGO: Synthesizing Algorithmic Programs with LLM-Generated Oracle
Verifiers [60.6418431624873]
大きな言語モデル(LLM)は、機能記述からコードを実装するのに優れているが、アルゴリズムの問題に悩まされている。
我々は,アルゴリズムプログラムを LLM 生成 Oracle で合成するフレームワーク ALGO を提案し,その生成をガイドし,その正確性を検証する。
実験の結果,ALGOを装着すると,Codexモデルよりも8倍,CodeTよりも2.6倍の1サブミッションパス率が得られることがわかった。
論文 参考訳(メタデータ) (2023-05-24T00:10:15Z) - Intergenerational Test Generation for Natural Language Processing
Applications [16.63835131985415]
各種NLPアプリケーションの誤動作を検出する自動テスト生成手法を提案する。
この手法をNLPLegoに実装し、シード文の可能性を完全に活用する。
NLPLegoは3つのタスクで約95.7%の精度で1,732, 5301, 261,879の誤った行動を検出することに成功した。
論文 参考訳(メタデータ) (2023-02-21T07:57:59Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z) - CodeT: Code Generation with Generated Tests [49.622590050797236]
テストケースを自動的に生成するための事前学習言語モデルについて検討する。
CodeTは生成されたテストケースを使ってコードソリューションを実行し、次に最良のソリューションを選択します。
我々は,HumanEvalとMBPPのベンチマークを用いて,5種類の事前学習モデル上でCodeTを評価する。
論文 参考訳(メタデータ) (2022-07-21T10:18:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。