論文の概要: Awareness of uncertainty in classification using a multivariate model and multi-views
- arxiv url: http://arxiv.org/abs/2404.10314v1
- Date: Tue, 16 Apr 2024 06:40:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 17:52:48.256419
- Title: Awareness of uncertainty in classification using a multivariate model and multi-views
- Title(参考訳): 多変量モデルと多視点を用いた分類の不確かさの認識
- Authors: Alexey Kornaev, Elena Kornaeva, Oleg Ivanov, Ilya Pershin, Danis Alukaev,
- Abstract要約: 提案モデルでは,不確かさ予測を正規化し,予測と不確かさ推定の両方を計算する訓練を行う。
複数ビュー予測と不確かさと信頼度を考慮し、最終的な予測を計算する方法をいくつか提案した。
提案手法はクリーンでノイズの多いラベル付きCIFAR-10データセットを用いて検証した。
- 参考スコア(独自算出の注目度): 1.3048920509133808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the ways to make artificial intelligence more natural is to give it some room for doubt. Two main questions should be resolved in that way. First, how to train a model to estimate uncertainties of its own predictions? And then, what to do with the uncertain predictions if they appear? First, we proposed an uncertainty-aware negative log-likelihood loss for the case of N-dimensional multivariate normal distribution with spherical variance matrix to the solution of N-classes classification tasks. The loss is similar to the heteroscedastic regression loss. The proposed model regularizes uncertain predictions, and trains to calculate both the predictions and their uncertainty estimations. The model fits well with the label smoothing technique. Second, we expanded the limits of data augmentation at the training and test stages, and made the trained model to give multiple predictions for a given number of augmented versions of each test sample. Given the multi-view predictions together with their uncertainties and confidences, we proposed several methods to calculate final predictions, including mode values and bin counts with soft and hard weights. For the latter method, we formalized the model tuning task in the form of multimodal optimization with non-differentiable criteria of maximum accuracy, and applied particle swarm optimization to solve the tuning task. The proposed methodology was tested using CIFAR-10 dataset with clean and noisy labels and demonstrated good results in comparison with other uncertainty estimation methods related to sample selection, co-teaching, and label smoothing.
- Abstract(参考訳): 人工知能をより自然にする方法の1つは、それを疑う余地を与えることだ。
この方法で2つの主要な疑問を解決すべきである。
まず、モデルをトレーニングして、自身の予測の不確実性を推定する方法。
そして、もし現れたら、不確実な予測はどうなるのか?
まず,N-クラス分類タスクの解に対する球分散行列を持つN-次元多変量正規分布の場合,不確実性を考慮した負の対数類似損失を提案する。
この損失はヘテロスセダスティック回帰損失と類似している。
提案モデルは不確かさ予測を正則化し,予測と不確かさ推定の両方を計算する訓練を行う。
モデルはラベルの平滑化技術とよく合っている。
第2に、トレーニングおよびテスト段階におけるデータ拡張の限界を拡張し、トレーニングされたモデルにより、各テストサンプルの所定の数の拡張バージョンに対して、複数の予測を行うようにしました。
マルチビュー予測と不確かさと信頼度を考慮し,モード値やソフトウェイトとハードウェイトによるビン数など,最終的な予測を計算する方法をいくつか提案した。
後者の手法では、モデルチューニングタスクを最大精度の微分不可能な基準でマルチモーダル最適化の形で定式化し、粒子群最適化を適用してチューニングタスクを解く。
提案手法は,CIFAR-10データセットをクリーンでノイズの多いラベル付きで試験し,サンプル選択,コティーチング,ラベル平滑化に関連する他の不確実性評価手法と比較した。
関連論文リスト
- Uncertainty-Calibrated Test-Time Model Adaptation without Forgetting [55.17761802332469]
テスト時間適応(TTA)は、与えられたモデルw.r.t.を任意のテストサンプルに適用することにより、トレーニングデータとテストデータの間の潜在的な分散シフトに取り組むことを目指している。
事前の手法は各テストサンプルに対してバックプロパゲーションを実行するため、多くのアプリケーションに対して許容できない最適化コストがかかる。
本稿では, 有効サンプル選択基準を策定し, 信頼性および非冗長なサンプルを同定する, 効率的なアンチフォッティングテスト時間適応法を提案する。
論文 参考訳(メタデータ) (2024-03-18T05:49:45Z) - Efficient Normalized Conformal Prediction and Uncertainty Quantification
for Anti-Cancer Drug Sensitivity Prediction with Deep Regression Forests [0.0]
予測間隔で機械学習モデルをペアリングするための有望な方法として、コンフォーマル予測が登場した。
本研究では,深部回帰林から得られた分散度を算出し,各試料の不確かさを推定する手法を提案する。
論文 参考訳(メタデータ) (2024-02-21T19:09:53Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
本稿では,大規模事前学習モデルを用いて,サンプル難易度を考慮したエントロピー正規化による下流モデルトレーニングを指導する。
我々は、挑戦的なベンチマークで精度と不確実性の校正を同時に改善する。
論文 参考訳(メタデータ) (2023-04-20T07:29:23Z) - Post-Selection Confidence Bounds for Prediction Performance [2.28438857884398]
機械学習では、潜在的に多くの競合モデルから有望なモデルを選択し、その一般化性能を評価することが重要な課題である。
本稿では,評価セットの予測性能に基づいて選択された複数のモデルに対して,有効な低信頼境界を求めるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-24T13:28:43Z) - Calibrated Selective Classification [34.08454890436067]
そこで我々は,「不確か」な不確実性のある例を拒否する手法を提案する。
本稿では,選択的校正モデル学習のためのフレームワークを提案する。そこでは,任意のベースモデルの選択的校正誤差を改善するために,個別のセレクタネットワークを訓練する。
われわれは,複数画像分類と肺癌リスク評価におけるアプローチの実証的効果を実証した。
論文 参考訳(メタデータ) (2022-08-25T13:31:09Z) - Benign-Overfitting in Conditional Average Treatment Effect Prediction
with Linear Regression [14.493176427999028]
線形回帰モデルを用いて条件平均処理効果(CATE)の予測における良性過剰適合理論について検討した。
一方,IPW-learnerは確率スコアが分かっていればリスクをゼロに収束させるが,T-learnerはランダムな割り当て以外の一貫性を達成できないことを示す。
論文 参考訳(メタデータ) (2022-02-10T18:51:52Z) - Conformal prediction for the design problem [72.14982816083297]
機械学習の現実的な展開では、次にテストすべきデータを選択するために予測アルゴリズムを使用します。
このような設定では、トレーニングデータとテストデータの間には、異なるタイプの分散シフトがある。
このような環境で予測の不確実性を定量化する手法を提案する。
論文 参考訳(メタデータ) (2022-02-08T02:59:12Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
多変量予測分布の条件パラメータを非パラメトリックにモデル化したNatural Gradient Boosting (NGBoost) 手法を提案する。
提案手法は頑健で, 広範囲なチューニングを伴わず, 推定対象分布に対してモジュール構造であり, 既存の手法と比較して競争力がある。
論文 参考訳(メタデータ) (2021-06-07T17:44:49Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。