Physical formula enhanced multi-task learning for pharmacokinetics prediction
- URL: http://arxiv.org/abs/2404.10354v1
- Date: Tue, 16 Apr 2024 07:42:55 GMT
- Title: Physical formula enhanced multi-task learning for pharmacokinetics prediction
- Authors: Ruifeng Li, Dongzhan Zhou, Ancheng Shen, Ao Zhang, Mao Su, Mingqian Li, Hongyang Chen, Gang Chen, Yin Zhang, Shufei Zhang, Yuqiang Li, Wanli Ouyang,
- Abstract summary: A major challenge for AI-driven drug discovery is the scarcity of high-quality data.
We develop a formula enhanced mul-ti-task learning (PEMAL) method that predicts four key parameters of pharmacokinetics simultaneously.
Our experiments reveal that PEMAL significantly lowers the data demand, compared to typical Graph Neural Networks.
- Score: 54.13787789006417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) technology has demonstrated remarkable potential in drug dis-covery, where pharmacokinetics plays a crucial role in determining the dosage, safety, and efficacy of new drugs. A major challenge for AI-driven drug discovery (AIDD) is the scarcity of high-quality data, which often requires extensive wet-lab work. A typical example of this is pharmacokinetic experiments. In this work, we develop a physical formula enhanced mul-ti-task learning (PEMAL) method that predicts four key parameters of pharmacokinetics simultaneously. By incorporating physical formulas into the multi-task framework, PEMAL facilitates effective knowledge sharing and target alignment among the pharmacokinetic parameters, thereby enhancing the accuracy of prediction. Our experiments reveal that PEMAL significantly lowers the data demand, compared to typical Graph Neural Networks. Moreover, we demonstrate that PEMAL enhances the robustness to noise, an advantage that conventional Neural Networks do not possess. Another advantage of PEMAL is its high flexibility, which can be potentially applied to other multi-task machine learning scenarios. Overall, our work illustrates the benefits and potential of using PEMAL in AIDD and other scenarios with data scarcity and noise.
Related papers
- Learning Chemotherapy Drug Action via Universal Physics-Informed Neural Networks [2.6071256756236916]
We apply Universal Physics-Informed Neural Networks to learn unknown components of various differential equations.
We learn three commonly employed chemotherapeutic drug actions from synthetic data.
We learn the net proliferation rate in a model of doxorubicin (a chemotherapeutic) pharmacodynamics.
arXiv Detail & Related papers (2024-04-11T01:30:05Z) - PIGNet2: A Versatile Deep Learning-based Protein-Ligand Interaction
Prediction Model for Binding Affinity Scoring and Virtual Screening [0.0]
Prediction of protein-ligand interactions (PLI) plays a crucial role in drug discovery.
The development of a versatile model capable of accurately scoring binding affinity and conducting efficient virtual screening remains a challenge.
Here, we propose a viable solution by introducing a novel data augmentation strategy combined with a physics-informed graph neural network.
arXiv Detail & Related papers (2023-07-03T14:46:49Z) - Unpaired Deep Learning for Pharmacokinetic Parameter Estimation from
Dynamic Contrast-Enhanced MRI [37.358265461543716]
We present a novel unpaired deep learning method for estimating both pharmacokinetic parameters and the AIF.
Our proposed CycleGAN framework is designed based on the underlying physics model, resulting in a simpler architecture with a single generator and discriminator pair.
Our experimental results indicate that our method, which does not necessitate separate AIF measurements, produces more reliable pharmacokinetic parameters than other techniques.
arXiv Detail & Related papers (2023-06-07T11:10:10Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
Annotations [90.27736364704108]
We present DrugOOD, a systematic OOD dataset curator and benchmark for AI-aided drug discovery.
DrugOOD comes with an open-source Python package that fully automates benchmarking processes.
We focus on one of the most crucial problems in AIDD: drug target binding affinity prediction.
arXiv Detail & Related papers (2022-01-24T12:32:48Z) - HINT: Hierarchical Interaction Network for Trial Outcome Prediction
Leveraging Web Data [56.53715632642495]
Clinical trials face uncertain outcomes due to issues with efficacy, safety, or problems with patient recruitment.
In this paper, we propose Hierarchical INteraction Network (HINT) for more general, clinical trial outcome predictions.
arXiv Detail & Related papers (2021-02-08T15:09:07Z) - Controlling Level of Unconsciousness by Titrating Propofol with Deep
Reinforcement Learning [5.276232626689567]
Reinforcement Learning can be used to fit a mapping from patient state to a medication regimen.
Deep RL replaces the table with a deep neural network and has been used to learn medication regimens from registry databases.
arXiv Detail & Related papers (2020-08-27T18:47:08Z) - Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost
Functions [80.12620331438052]
deep learning has become an important tool for rapid screening of billions of molecules in silico for potential hits containing desired chemical features.
Despite its importance, substantial challenges persist in training these models, such as severe class imbalance, high decision thresholds, and lack of ground truth labels in some datasets.
We argue in favor of directly optimizing the receiver operating characteristic (ROC) in such cases, due to its robustness to class imbalance.
arXiv Detail & Related papers (2020-06-25T08:46:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.