Learning Chemotherapy Drug Action via Universal Physics-Informed Neural Networks
- URL: http://arxiv.org/abs/2404.08019v1
- Date: Thu, 11 Apr 2024 01:30:05 GMT
- Title: Learning Chemotherapy Drug Action via Universal Physics-Informed Neural Networks
- Authors: Lena Podina, Ali Ghodsi, Mohammad Kohandel,
- Abstract summary: We apply Universal Physics-Informed Neural Networks to learn unknown components of various differential equations.
We learn three commonly employed chemotherapeutic drug actions from synthetic data.
We learn the net proliferation rate in a model of doxorubicin (a chemotherapeutic) pharmacodynamics.
- Score: 2.6071256756236916
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantitative systems pharmacology (QSP) is widely used to assess drug effects and toxicity before the drug goes to clinical trial. However, significant manual distillation of the literature is needed in order to construct a QSP model. Parameters may need to be fit, and simplifying assumptions of the model need to be made. In this work, we apply Universal Physics-Informed Neural Networks (UPINNs) to learn unknown components of various differential equations that model chemotherapy pharmacodynamics. We learn three commonly employed chemotherapeutic drug actions (log-kill, Norton-Simon, and E_max) from synthetic data. Then, we use the UPINN method to fit the parameters for several synthetic datasets simultaneously. Finally, we learn the net proliferation rate in a model of doxorubicin (a chemotherapeutic) pharmacodynamics. As these are only toy examples, we highlight the usefulness of UPINNs in learning unknown terms in pharmacodynamic and pharmacokinetic models.
Related papers
- HyperSBINN: A Hypernetwork-Enhanced Systems Biology-Informed Neural Network for Efficient Drug Cardiosafety Assessment [0.46435896353765527]
We introduce a novel approach to solving parameterized models of cardiac action potentials by combining meta-learning techniques with Systems Biology-Informed Neural Networks ( SBINNs)
The proposed method, Hyper SBINN, effectively addresses the challenge of predicting the effects of various compounds at different concentrations on cardiac action potentials.
arXiv Detail & Related papers (2024-08-26T13:40:33Z) - Discovering intrinsic multi-compartment pharmacometric models using Physics Informed Neural Networks [0.0]
We introduce PKINNs, a novel purely data-driven neural network model.
PKINNs efficiently discovers and models intrinsic multi-compartment-based pharmacometric structures.
The resulting models are both interpretable and explainable through Symbolic Regression methods.
arXiv Detail & Related papers (2024-04-30T19:31:31Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
A major challenge for AI-driven drug discovery is the scarcity of high-quality data.
We develop a formula enhanced mul-ti-task learning (PEMAL) method that predicts four key parameters of pharmacokinetics simultaneously.
Our experiments reveal that PEMAL significantly lowers the data demand, compared to typical Graph Neural Networks.
arXiv Detail & Related papers (2024-04-16T07:42:55Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
We propose a novel setting and models for in-context drug synergy learning.
We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets.
Our goal is to predict additional drug synergy relationships in that context.
arXiv Detail & Related papers (2023-06-19T17:03:46Z) - Multi-objective Molecular Optimization for Opioid Use Disorder Treatment
Using Generative Network Complex [5.33208055504216]
Opioid Use Disorder (OUD) has emerged as a significant global health issue.
In this study, we propose a deep generative model that combines a differential equation (SDE)-based diffusion modeling with the latent space of a pretrained autoencoder model.
The molecular generator enables efficient generation of molecules that are effective on multiple targets.
arXiv Detail & Related papers (2023-06-13T01:12:31Z) - Unpaired Deep Learning for Pharmacokinetic Parameter Estimation from
Dynamic Contrast-Enhanced MRI [37.358265461543716]
We present a novel unpaired deep learning method for estimating both pharmacokinetic parameters and the AIF.
Our proposed CycleGAN framework is designed based on the underlying physics model, resulting in a simpler architecture with a single generator and discriminator pair.
Our experimental results indicate that our method, which does not necessitate separate AIF measurements, produces more reliable pharmacokinetic parameters than other techniques.
arXiv Detail & Related papers (2023-06-07T11:10:10Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - RECOVER: sequential model optimization platform for combination drug
repurposing identifies novel synergistic compounds in vitro [46.773794687622825]
We employ a sequential model optimization search applied to a deep learning model to quickly discover highly synergistic drug combinations active against a cancer cell line.
We find that the set of combinations queried by our model is enriched for highly synergistic combinations.
Remarkably, we rediscovered a synergistic drug combination that was later confirmed to be under study within clinical trials.
arXiv Detail & Related papers (2022-02-07T02:54:29Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
latent hybridisation model (LHM) integrates a system of expert-designed ODEs with machine-learned Neural ODEs to fully describe the dynamics of the system.
We evaluate LHM on synthetic data as well as real-world intensive care data of COVID-19 patients.
arXiv Detail & Related papers (2021-06-05T11:42:45Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
In this paper, we apply transfer learning to the prediction of anti-cancer drug response.
We apply the classic transfer learning framework that trains a prediction model on the source dataset and refines it on the target dataset.
The ensemble transfer learning pipeline is implemented using LightGBM and two deep neural network (DNN) models with different architectures.
arXiv Detail & Related papers (2020-05-13T20:29:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.