Learning Wireless Data Knowledge Graph for Green Intelligent Communications: Methodology and Experiments
- URL: http://arxiv.org/abs/2404.10365v1
- Date: Tue, 16 Apr 2024 07:55:34 GMT
- Title: Learning Wireless Data Knowledge Graph for Green Intelligent Communications: Methodology and Experiments
- Authors: Yongming Huang, Xiaohu You, Hang Zhan, Shiwen He, Ningning Fu, Wei Xu,
- Abstract summary: We propose a pervasive multi-level (PML) native AI architecture, which integrates the concept of knowledge graph (KG) into the intelligent operational manipulations of mobile networks.
We characterize the massive and complex data collected from wireless communication networks and analyze the relationships among various data fields.
This architecture not only enhances AI training, inference, and validation processes but also significantly reduces resource wastage and overhead for communication networks.
- Score: 36.82287751359216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intelligent communications have played a pivotal role in shaping the evolution of 6G networks. Native artificial intelligence (AI) within green communication systems must meet stringent real-time requirements. To achieve this, deploying lightweight and resource-efficient AI models is necessary. However, as wireless networks generate a multitude of data fields and indicators during operation, only a fraction of them imposes significant impact on the network AI models. Therefore, real-time intelligence of communication systems heavily relies on a small but critical set of the data that profoundly influences the performance of network AI models. These challenges underscore the need for innovative architectures and solutions. In this paper, we propose a solution, termed the pervasive multi-level (PML) native AI architecture, which integrates the concept of knowledge graph (KG) into the intelligent operational manipulations of mobile networks, resulting in the establishment of a wireless data KG. Leveraging the wireless data KG, we characterize the massive and complex data collected from wireless communication networks and analyze the relationships among various data fields. The obtained graph of data field relations enables the on-demand generation of minimal and effective datasets, referred to as feature datasets, tailored to specific application requirements. Consequently, this architecture not only enhances AI training, inference, and validation processes but also significantly reduces resource wastage and overhead for communication networks. To implement this architecture, we have developed a specific solution comprising a spatio-temporal heterogeneous graph attention neural network model (STREAM) as well as a feature dataset generation algorithm. Experiments are conducted to validate the effectiveness of the proposed architecture.
Related papers
- AI Flow at the Network Edge [58.31090055138711]
AI Flow is a framework that streamlines the inference process by jointly leveraging the heterogeneous resources available across devices, edge nodes, and cloud servers.
This article serves as a position paper for identifying the motivation, challenges, and principles of AI Flow.
arXiv Detail & Related papers (2024-11-19T12:51:17Z) - Generative AI for Data Augmentation in Wireless Networks: Analysis, Applications, and Case Study [59.780800481241066]
Generative Artificial Intelligence (GenAI) can be an effective alternative to wireless data augmentation.
This article explores the potential and effectiveness of GenAI-driven data augmentation in wireless networks.
We propose a general generative diffusion model-based data augmentation framework for Wi-Fi gesture recognition.
arXiv Detail & Related papers (2024-11-13T05:15:25Z) - Snake Learning: A Communication- and Computation-Efficient Distributed Learning Framework for 6G [16.384569776333873]
"Snake Learning" is a cost-effective distributed learning framework for 6G networks.
It sequentially trains the designated part of model layers on individual nodes.
It reduces the requirements for storage, memory and communication during the model training phase.
arXiv Detail & Related papers (2024-05-06T11:25:59Z) - Multi-Agent Reinforcement Learning for Power Control in Wireless
Networks via Adaptive Graphs [1.1861167902268832]
Multi-agent deep reinforcement learning (MADRL) has emerged as a promising method to address a wide range of complex optimization problems like power control.
We present the use of graphs as communication-inducing structures among distributed agents as an effective means to mitigate these challenges.
arXiv Detail & Related papers (2023-11-27T14:25:40Z) - Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
federated learning (FL) emerges as an effective distributed machine learning framework.
We discuss the challenges and solutions of achieving scalable wireless FL from the perspectives of both network design and resource orchestration.
arXiv Detail & Related papers (2023-10-08T08:55:03Z) - Causal Reasoning: Charting a Revolutionary Course for Next-Generation
AI-Native Wireless Networks [63.246437631458356]
Next-generation wireless networks (e.g., 6G) will be artificial intelligence (AI)-native.
This article introduces a novel framework for building AI-native wireless networks; grounded in the emerging field of causal reasoning.
We highlight several wireless networking challenges that can be addressed by causal discovery and representation.
arXiv Detail & Related papers (2023-09-23T00:05:39Z) - Graph Neural Networks for Multi-Robot Active Information Acquisition [15.900385823366117]
A team of mobile robots, communicating through an underlying graph, estimates a hidden state expressing a phenomenon of interest.
Existing approaches are either not scalable, unable to handle dynamic phenomena or not robust to changes in the communication graph.
We propose an Information-aware Graph Block Network (I-GBNet) that aggregates information over the graph representation and provides sequential-decision making in a distributed manner.
arXiv Detail & Related papers (2022-09-24T21:45:06Z) - Representation Learning of Knowledge Graph for Wireless Communication
Networks [21.123289598816847]
This article aims to understand the endogenous relationship of wireless data by constructing a knowledge graph according to the wireless communication protocols.
A novel model based on graph convolutional neural networks is designed to learn the representation of the graph, which is used to classify graph nodes and simulate the relation prediction.
arXiv Detail & Related papers (2022-08-22T07:36:34Z) - Neuro-Symbolic Artificial Intelligence (AI) for Intent based Semantic
Communication [85.06664206117088]
6G networks must consider semantics and effectiveness (at end-user) of the data transmission.
NeSy AI is proposed as a pillar for learning causal structure behind the observed data.
GFlowNet is leveraged for the first time in a wireless system to learn the probabilistic structure which generates the data.
arXiv Detail & Related papers (2022-05-22T07:11:57Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.