Generative AI for Data Augmentation in Wireless Networks: Analysis, Applications, and Case Study
- URL: http://arxiv.org/abs/2411.08341v1
- Date: Wed, 13 Nov 2024 05:15:25 GMT
- Title: Generative AI for Data Augmentation in Wireless Networks: Analysis, Applications, and Case Study
- Authors: Jinbo Wen, Jiawen Kang, Dusit Niyato, Yang Zhang, Jiacheng Wang, Biplab Sikdar, Ping Zhang,
- Abstract summary: Generative Artificial Intelligence (GenAI) can be an effective alternative to wireless data augmentation.
This article explores the potential and effectiveness of GenAI-driven data augmentation in wireless networks.
We propose a general generative diffusion model-based data augmentation framework for Wi-Fi gesture recognition.
- Score: 59.780800481241066
- License:
- Abstract: Data augmentation is a powerful technique to mitigate data scarcity. However, owing to fundamental differences in wireless data structures, traditional data augmentation techniques may not be suitable for wireless data. Fortunately, Generative Artificial Intelligence (GenAI) can be an effective alternative to wireless data augmentation due to its excellent data generation capability. This article systemically explores the potential and effectiveness of GenAI-driven data augmentation in wireless networks. We first briefly review data augmentation techniques, discuss their limitations in wireless networks, and introduce generative data augmentation, including reviewing GenAI models and their applications in data augmentation. We then explore the application prospects of GenAI-driven data augmentation in wireless networks from the physical, network, and application layers, which provides a GenAI-driven data augmentation architecture for each application. Subsequently, we propose a general generative diffusion model-based data augmentation framework for Wi-Fi gesture recognition, which uses transformer-based diffusion models to generate high-quality channel state information data. Furthermore, we develop residual neural network models for Wi-Fi gesture recognition to evaluate the role of augmented data and conduct a case study based on a real dataset. Simulation results demonstrate the effectiveness of the proposed framework. Finally, we discuss research directions for generative data augmentation.
Related papers
- Generative AI for RF Sensing in IoT systems [10.326067512318163]
Radio Frequency (RF) sensing stands out for its cost-effective and non-intrusive monitoring of human activities and environmental changes.
Traditional RF sensing methods face significant challenges, including noise, interference, incomplete data, and high deployment costs.
This paper investigates the potential of Generative AI (GenAI) to overcome these limitations within the Internet of Things ecosystem.
arXiv Detail & Related papers (2024-07-10T09:51:44Z) - A Comprehensive Survey on Data Augmentation [55.355273602421384]
Data augmentation is a technique that generates high-quality artificial data by manipulating existing data samples.
Existing literature surveys only focus on a certain type of specific modality data.
We propose a more enlightening taxonomy that encompasses data augmentation techniques for different common data modalities.
arXiv Detail & Related papers (2024-05-15T11:58:08Z) - Learning Wireless Data Knowledge Graph for Green Intelligent Communications: Methodology and Experiments [36.82287751359216]
We propose a pervasive multi-level (PML) native AI architecture, which integrates the concept of knowledge graph (KG) into the intelligent operational manipulations of mobile networks.
We characterize the massive and complex data collected from wireless communication networks and analyze the relationships among various data fields.
This architecture not only enhances AI training, inference, and validation processes but also significantly reduces resource wastage and overhead for communication networks.
arXiv Detail & Related papers (2024-04-16T07:55:34Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Representation Learning of Knowledge Graph for Wireless Communication
Networks [21.123289598816847]
This article aims to understand the endogenous relationship of wireless data by constructing a knowledge graph according to the wireless communication protocols.
A novel model based on graph convolutional neural networks is designed to learn the representation of the graph, which is used to classify graph nodes and simulate the relation prediction.
arXiv Detail & Related papers (2022-08-22T07:36:34Z) - Transformer Networks for Data Augmentation of Human Physical Activity
Recognition [61.303828551910634]
State of the art models like Recurrent Generative Adrial Networks (RGAN) are used to generate realistic synthetic data.
In this paper, transformer based generative adversarial networks which have global attention on data, are compared on PAMAP2 and Real World Human Activity Recognition data sets with RGAN.
arXiv Detail & Related papers (2021-09-02T16:47:29Z) - The Imaginative Generative Adversarial Network: Automatic Data
Augmentation for Dynamic Skeleton-Based Hand Gesture and Human Action
Recognition [27.795763107984286]
We present a novel automatic data augmentation model, which approximates the distribution of the input data and samples new data from this distribution.
Our results show that the augmentation strategy is fast to train and can improve classification accuracy for both neural networks and state-of-the-art methods.
arXiv Detail & Related papers (2021-05-27T11:07:09Z) - Data Augmentation for Enhancing EEG-based Emotion Recognition with Deep
Generative Models [13.56090099952884]
We propose three methods for augmenting EEG training data to enhance the performance of emotion recognition models.
For the full usage strategy, all of the generated data are augmented to the training dataset without judging the quality of the generated data.
The experimental results demonstrate that the augmented training datasets produced by our methods enhance the performance of EEG-based emotion recognition models.
arXiv Detail & Related papers (2020-06-04T21:23:09Z) - A Big Data Enabled Channel Model for 5G Wireless Communication Systems [71.93009775340234]
This paper investigates various applications of big data analytics, especially machine learning algorithms in wireless communications and channel modeling.
We propose a big data and machine learning enabled wireless channel model framework.
The proposed channel model is based on artificial neural networks (ANNs), including feed-forward neural network (FNN) and radial basis function neural network (RBF-NN)
arXiv Detail & Related papers (2020-02-28T05:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.