論文の概要: The Unreasonable Effectiveness of Pre-Trained Features for Camera Pose Refinement
- arxiv url: http://arxiv.org/abs/2404.10438v1
- Date: Tue, 16 Apr 2024 10:04:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 17:13:30.399721
- Title: The Unreasonable Effectiveness of Pre-Trained Features for Camera Pose Refinement
- Title(参考訳): カメラ・ポーズ・リファインメントにおける事前学習機能の有効性
- Authors: Gabriele Trivigno, Carlo Masone, Barbara Caputo, Torsten Sattler,
- Abstract要約: 本稿では,事前学習した特徴を粒子フィルタとレンダリング可能なシーン表現と組み合わせた簡単なアプローチを提案する。
その単純さにもかかわらず、最先端の結果を達成し、特定のトレーニングを必要とせずに簡単にポーズリファインダーを構築できることを実証する。
- 参考スコア(独自算出の注目度): 42.86332340757648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pose refinement is an interesting and practically relevant research direction. Pose refinement can be used to (1) obtain a more accurate pose estimate from an initial prior (e.g., from retrieval), (2) as pre-processing, i.e., to provide a better starting point to a more expensive pose estimator, (3) as post-processing of a more accurate localizer. Existing approaches focus on learning features / scene representations for the pose refinement task. This involves training an implicit scene representation or learning features while optimizing a camera pose-based loss. A natural question is whether training specific features / representations is truly necessary or whether similar results can be already achieved with more generic features. In this work, we present a simple approach that combines pre-trained features with a particle filter and a renderable representation of the scene. Despite its simplicity, it achieves state-of-the-art results, demonstrating that one can easily build a pose refiner without the need for specific training. The code is at https://github.com/ga1i13o/mcloc_poseref
- Abstract(参考訳): 詩の洗練は興味深く、実際的な研究の方向性である。
ポース・リファインメントは、(1)初期からより正確なポーズ推定値(例えば、検索から)を得る、(2)前処理として、すなわち、より高価なポーズ推定器により良いスタートポイントを与える、(3)より正確なローカライザの事後処理として利用することができる。
既存のアプローチでは、ポーズリファインメントタスクのための特徴やシーン表現の学習に重点を置いている。
これには暗黙のシーン表現や学習機能をトレーニングし、カメラのポーズベースの損失を最適化することが含まれる。
自然な疑問は、特定の機能/表現のトレーニングが本当に必要かどうか、あるいは、より一般的な機能で、同様の結果がすでに達成されているかどうかである。
本研究では,事前学習した特徴と粒子フィルタとシーンのレンダリング可能な表現を組み合わせた簡単なアプローチを提案する。
その単純さにもかかわらず、最先端の結果を達成し、特定のトレーニングを必要とせずに簡単にポーズリファインダーを構築できることを実証する。
コードはhttps://github.com/ga1i13o/mcloc_poserefにある。
関連論文リスト
- SRPose: Two-view Relative Pose Estimation with Sparse Keypoints [51.49105161103385]
SRPoseは、カメラ・トゥ・ワールドおよびオブジェクト・トゥ・カメラシナリオにおける2ビュー相対ポーズ推定のためのスパースキーポイントベースのフレームワークである。
精度と速度の点で最先端の手法と比較して、競争力や優れた性能を達成する。
さまざまな画像サイズやカメラ固有の機能に対して堅牢であり、低コンピューティングリソースでデプロイすることができる。
論文 参考訳(メタデータ) (2024-07-11T05:46:35Z) - Learning a Category-level Object Pose Estimator without Pose Annotations [37.03715008347576]
ポーズアノテーションを使わずにカテゴリレベルの3Dオブジェクトのポーズ推定を学習することを提案する。
手動でアノテートされた画像を使用する代わりに、拡散モデルを利用して、制御されたポーズ差の下で一連の画像を生成する。
提案手法は,単一ショット設定からカテゴリレベルのオブジェクトポーズ推定を行う能力を有することを示す。
論文 参考訳(メタデータ) (2024-04-08T15:59:29Z) - FlowCam: Training Generalizable 3D Radiance Fields without Camera Poses
via Pixel-Aligned Scene Flow [26.528667940013598]
ポーズ画像からの3次元ニューラルネットワークの再構成は、自己教師付き表現学習の有望な方法として現れている。
これらの3Dシーンの学習者が大規模ビデオデータに展開するのを防ぐ重要な課題は、構造から移動までの正確なカメラポーズに依存することである。
本稿では,オンラインと1つのフォワードパスでカメラポーズと3Dニューラルシーン表現を共同で再構築する手法を提案する。
論文 参考訳(メタデータ) (2023-05-31T20:58:46Z) - Generalizable Pose Estimation Using Implicit Scene Representations [4.124185654280966]
6-DoFのポーズ推定は、ロボット操作パイプラインの重要なコンポーネントである。
本稿では,異なるポーズで表現できる十分な情報を含むモデルを用いたポーズ推定の一般化能力について論じる。
最終評価では,既存手法と比較して推論性能と速度が大幅に向上した。
論文 参考訳(メタデータ) (2023-05-26T20:42:52Z) - PoseMatcher: One-shot 6D Object Pose Estimation by Deep Feature Matching [51.142988196855484]
本稿では,PoseMatcherを提案する。
3ビューシステムに基づくオブジェクトと画像のマッチングのための新しいトレーニングパイプラインを作成します。
PoseMatcherは、画像とポイントクラウドの異なる入力モダリティに対応できるように、IO-Layerを導入します。
論文 参考訳(メタデータ) (2023-04-03T21:14:59Z) - Visual Localization via Few-Shot Scene Region Classification [84.34083435501094]
ビジュアル(再)ローカライゼーションは、既知のシーンでキャプチャされたクエリイメージの6-DoFカメラのポーズを推定する問題に対処する。
画像画素からシーン座標へのマッピングを記憶することで,この問題を解決する。
シーン領域の分類手法を提案する。
論文 参考訳(メタデータ) (2022-08-14T22:39:02Z) - Perspective Flow Aggregation for Data-Limited 6D Object Pose Estimation [121.02948087956955]
宇宙や水中の深層などのいくつかのアプリケーションでは、実際の画像を取得することは、注釈のないものであっても、事実上不可能である。
本稿では,合成画像のみに限定してトレーニングできる手法を提案する。
これは、アノテートされた実画像を必要としない場合、トレーニングのためにアノテートされた実画像を必要とするメソッドと同等に動作し、20個の実画像を使用する場合、かなりパフォーマンスが向上する。
論文 参考訳(メタデータ) (2022-03-18T10:20:21Z) - Visual Camera Re-Localization Using Graph Neural Networks and Relative
Pose Supervision [31.947525258453584]
視覚再局在化とは、単一の画像を入力として、予め記録された環境に対してカメラの位置と向きを推定する手段である。
提案手法は特別な仮定をほとんど行わず,訓練やテストでは極めて軽量である。
標準の屋内(7-Scenes)と屋外(Cambridge Landmarks)のカメラ再ローカリゼーションベンチマークに対するアプローチの有効性を検証する。
論文 参考訳(メタデータ) (2021-04-06T14:29:03Z) - Back to the Feature: Learning Robust Camera Localization from Pixels to
Pose [114.89389528198738]
画像と3Dモデルから正確な6-DoFのポーズを推定するシーンに依存しないニューラルネットワークPixLocを導入する。
このシステムは、粗いポーズ前の大きな環境でもローカライズできるが、スパース特徴マッチングの精度も向上する。
論文 参考訳(メタデータ) (2021-03-16T17:40:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。