論文の概要: Efficient optimal dispersed Haar-like filters for face detection
- arxiv url: http://arxiv.org/abs/2404.10476v1
- Date: Tue, 16 Apr 2024 11:38:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 17:03:46.241261
- Title: Efficient optimal dispersed Haar-like filters for face detection
- Title(参考訳): 顔検出のための最適分散Haarライクフィルタ
- Authors: Zeinab Sedaghatjoo, Hossein Hosseinzadeh, Ahmad shirzadi,
- Abstract要約: フィルタを見つける基本的な考え方は、クラス間の最大化とクラス内の分散の最小化である。
提案フィルタはハール様フィルタを分散した最適構成とみなすことができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a new dispersed Haar-like filter for efficiently detection face. The basic idea for finding the filter is maximising between-class and minimising within-class variance. The proposed filters can be considered as an optimal configuration dispersed Haar-like filters; filters with disjoint black and white parts.
- Abstract(参考訳): 本稿では,顔を効率よく検出するための分散Haarライクなフィルタを提案する。
フィルタを見つける基本的な考え方は、クラス間の最大化とクラス内の分散の最小化である。
提案フィルタはハール様フィルタを分散した最適構成とみなすことができる。
関連論文リスト
- Implicit Maximum a Posteriori Filtering via Adaptive Optimization [4.767884267554628]
標準ベイズフィルタ問題を時間変化目標に対する最適化として検討する。
我々のフレームワークは、高次元システムに対して効率的で堅牢でスケーラブルなフィルタをもたらすことを示す。
論文 参考訳(メタデータ) (2023-11-17T15:30:44Z) - Asymptotic Soft Cluster Pruning for Deep Neural Networks [5.311178623385279]
フィルタプルーニング法は, 選択したフィルタを除去することにより, 構造的疎結合を導入する。
Asymptotic Soft Cluster Pruning と呼ばれる新しいフィルタプルーニング法を提案する。
提案手法は,多くの最先端アルゴリズムと比較して,競合的な結果が得られる。
論文 参考訳(メタデータ) (2022-06-16T13:58:58Z) - Computational Doob's h-transforms for Online Filtering of Discretely
Observed Diffusions [65.74069050283998]
本研究では,Doobの$h$-transformsを近似する計算フレームワークを提案する。
提案手法は、最先端粒子フィルタよりも桁違いに効率的である。
論文 参考訳(メタデータ) (2022-06-07T15:03:05Z) - Reverse image filtering using total derivative approximation and
accelerated gradient descent [82.93345261434943]
線形あるいは非線形な画像フィルタの効果を逆転する新たな問題に対処する。
この仮定では、フィルタのアルゴリズムは未知であり、フィルタはブラックボックスとして利用できる。
この逆問題を、局所的なパッチベースのコスト関数の最小化として定式化し、全導関数を用いて勾配勾配の勾配を近似し、問題を解く。
論文 参考訳(メタデータ) (2021-12-08T05:16:11Z) - Learning Versatile Convolution Filters for Efficient Visual Recognition [125.34595948003745]
本稿では,効率的な畳み込みニューラルネットワーク構築のための多目的フィルタを提案する。
本稿では,ネットワークの複雑性に関する理論的解析を行い,効率的な畳み込み手法を提案する。
ベンチマークデータセットとニューラルネットワークの実験結果は、我々の汎用フィルタが元のフィルタと同等の精度を達成できることを実証している。
論文 参考訳(メタデータ) (2021-09-20T06:07:14Z) - Training Compact CNNs for Image Classification using Dynamic-coded
Filter Fusion [139.71852076031962]
動的符号化フィルタ融合(DCFF)と呼ばれる新しいフィルタプルーニング法を提案する。
我々は、効率的な画像分類のために、計算経済的および正規化のない方法でコンパクトなCNNを導出する。
我々のDCFFは、72.77MのFLOPと1.06Mのパラメータしか持たないコンパクトなVGGNet-16を導出し、トップ1の精度は93.47%に達した。
論文 参考訳(メタデータ) (2021-07-14T18:07:38Z) - Unsharp Mask Guided Filtering [53.14430987860308]
本論文の目的は,フィルタ中の構造伝達の重要性を強調した画像フィルタリングである。
アンシャープマスキングにインスパイアされたガイドフィルタの新しい簡易な定式化を提案する。
我々の定式化は低域フィルタに先立ってフィルタを楽しみ、単一の係数を推定することで明示的な構造伝達を可能にする。
論文 参考訳(メタデータ) (2021-06-02T19:15:34Z) - Equivalence of Correlation Filter and Convolution Filter in Visual
Tracking [10.820122999766713]
相関フィルタは視覚追跡にうまく適用されている。
畳み込みフィルタは通常、画像処理においてぼやけ、研削、エンボス、エッジ検出などに使用される。
論文 参考訳(メタデータ) (2021-05-01T04:05:37Z) - Innovative And Additive Outlier Robust Kalman Filtering With A Robust
Particle Filter [68.8204255655161]
提案するCE-BASSは, 粒子混合カルマンフィルタであり, 革新的および付加的両方の外れ値に対して堅牢であり, 隠蔽状態の分布における多モード性を完全に捉えることができる。
さらに、CE-BASSは過去の状態を再サンプリングすることで、トレンドの変化のような観測ですぐには見えない革新的な外れ値を扱うことができる。
論文 参考訳(メタデータ) (2020-07-07T07:11:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。