論文の概要: CoTAR: Chain-of-Thought Attribution Reasoning with Multi-level Granularity
- arxiv url: http://arxiv.org/abs/2404.10513v1
- Date: Tue, 16 Apr 2024 12:37:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 16:53:59.434568
- Title: CoTAR: Chain-of-Thought Attribution Reasoning with Multi-level Granularity
- Title(参考訳): CoTAR:多レベルの粒度を持つ連鎖帰属推論
- Authors: Moshe Berchansky, Daniel Fleischer, Moshe Wasserblat, Peter Izsak,
- Abstract要約: 本稿では、属性の精度を高めるために、属性指向のチェーン・オブ・ソート推論手法を提案する。
GPT-4を用いた2つの文脈付き質問応答データセットの評価により,属性の精度と正確性が改善された。
- 参考スコア(独自算出の注目度): 8.377398103067508
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State-of-the-art performance in QA tasks is currently achieved by systems employing Large Language Models (LLMs), however these models tend to hallucinate information in their responses. One approach focuses on enhancing the generation process by incorporating attribution from the given input to the output. However, the challenge of identifying appropriate attributions and verifying their accuracy against a source is a complex task that requires significant improvements in assessing such systems. We introduce an attribution-oriented Chain-of-Thought reasoning method to enhance the accuracy of attributions. This approach focuses the reasoning process on generating an attribution-centric output. Evaluations on two context-enhanced question-answering datasets using GPT-4 demonstrate improved accuracy and correctness of attributions. In addition, the combination of our method with finetuning enhances the response and attribution accuracy of two smaller LLMs, showing their potential to outperform GPT-4 in some cases.
- Abstract(参考訳): QAタスクの最先端性能は、現在、Large Language Models (LLMs) を用いたシステムによって達成されているが、これらのモデルは、その応答において情報を幻覚させる傾向がある。
1つのアプローチは、与えられた入力から出力への属性を組み込むことで生成プロセスの強化に焦点を当てる。
しかし、適切な属性を特定し、ソースに対する精度を検証するという課題は、そのようなシステムを評価する上で大幅な改善を必要とする複雑な作業である。
本稿では、属性の精度を高めるために、属性指向のチェーン・オブ・ソート推論手法を提案する。
このアプローチは帰属中心の出力を生成するための推論プロセスに焦点を当てる。
GPT-4を用いた2つの文脈付き質問応答データセットの評価により,属性の精度と正確性が改善された。
さらに, 微調整法と組み合わせることで, 2つの小型LCMの応答と帰属精度が向上し, GPT-4より優れる可能性が示唆された。
関連論文リスト
- Automatic Evaluation for Text-to-image Generation: Task-decomposed Framework, Distilled Training, and Meta-evaluation Benchmark [62.58869921806019]
GPT-4oに基づくタスク分解評価フレームワークを提案し、新しいトレーニングデータセットを自動構築する。
我々は、GPT-4oの評価能力を7BオープンソースMLLM、MiniCPM-V-2.6に効果的に蒸留するための革新的なトレーニング戦略を設計する。
実験結果から,我々の蒸留したオープンソースMLLMは,現在のGPT-4oベースラインよりも有意に優れていた。
論文 参考訳(メタデータ) (2024-11-23T08:06:06Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
大規模言語モデル(LLM)は一貫性と正確な推論に苦しむ。
LLMは、主に正しいソリューションに基づいて訓練され、エラーを検出して学習する能力を減らす。
本稿では,CoT(Chain-of-Thought)とPoT(Program-of-Thought)を組み合わせた新しい協調手法を提案する。
論文 参考訳(メタデータ) (2024-10-05T05:21:48Z) - Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
本稿では,ALMの信頼性とトレーサビリティ向上を目的とした,新たな自己推論フレームワークを提案する。
このフレームワークは、関連性を認識したプロセス、エビデンスを認識した選択プロセス、軌跡解析プロセスの3つのプロセスで自己推論軌道を構築することを含む。
提案手法の優位性を示すため,4つの公開データセットにまたがるフレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-07-29T09:05:10Z) - Zero-Shot Embeddings Inform Learning and Forgetting with Vision-Language Encoders [6.7181844004432385]
IMM(Inter-Intra Modal Measure)は、微調整によるパフォーマンス変化の強力な予測器として機能する。
IIMMスコアの高いタスクの微調整はドメイン内のパフォーマンス向上をもたらすが、ドメイン外のパフォーマンス低下も引き起こす。
ターゲットデータの1つのフォワードパスだけで、実践者は、この重要な洞察を利用して、モデルが微調整後の改善を期待できる程度を評価することができる。
論文 参考訳(メタデータ) (2024-07-22T15:35:09Z) - Enhancing Retrieval-Augmented LMs with a Two-stage Consistency Learning Compressor [4.35807211471107]
本研究では,検索強化言語モデルにおける検索情報圧縮のための2段階一貫性学習手法を提案する。
提案手法は複数のデータセットにまたがって実験的に検証され,質問応答タスクの精度と効率が顕著に向上したことを示す。
論文 参考訳(メタデータ) (2024-06-04T12:43:23Z) - Masked Thought: Simply Masking Partial Reasoning Steps Can Improve Mathematical Reasoning Learning of Language Models [102.72940700598055]
推論タスクでは、小さなエラーでも不正確な結果にカスケードすることができる。
入力の摂動に頼らず、外部リソースの導入を避ける手法を開発した。
私たちのトレーニングアプローチでは、思考の連鎖の中で特定のトークンをランダムにマスクします。
論文 参考訳(メタデータ) (2024-03-04T16:21:54Z) - Learning to Filter Context for Retrieval-Augmented Generation [75.18946584853316]
生成モデルは、部分的にまたは完全に無関係な経路が与えられた出力を生成するために要求される。
FILCOは、語彙と情報理論のアプローチに基づいて有用なコンテキストを特定する。
テスト時に検索したコンテキストをフィルタリングできるコンテキストフィルタリングモデルをトレーニングする。
論文 参考訳(メタデータ) (2023-11-14T18:41:54Z) - Data-Centric Long-Tailed Image Recognition [49.90107582624604]
ロングテールモデルは高品質なデータに対する強い需要を示している。
データ中心のアプローチは、モデルパフォーマンスを改善するために、データの量と品質の両方を強化することを目的としています。
現在、情報強化の有効性を説明するメカニズムに関する研究が不足している。
論文 参考訳(メタデータ) (2023-11-03T06:34:37Z) - Towards Reliable and Fluent Large Language Models: Incorporating
Feedback Learning Loops in QA Systems [10.58737969057445]
我々は,大規模な言語モデルによって生成された応答の引用,正しさ,および流布性を評価することができる評論家モデルを訓練するためのデータセットを構築した。
本稿では,批判モデルを利用して生成したテキストの異質な側面をリアルタイムにフィードバックする自動フィードバック機構を提案する。
提案手法の有効性を実験的に検証し,4%の精度向上とMAUVE測定値の約8%の精度向上を図った。
論文 参考訳(メタデータ) (2023-09-08T09:39:53Z) - Adversarial Fine-Tuning of Language Models: An Iterative Optimisation
Approach for the Generation and Detection of Problematic Content [0.0]
大規模言語モデル(LLM)における意図しない有害コンテンツ生成の課題に挑戦する。
私たちの2つのアプローチでは、潜在的に有害なプロンプトを生成するために微調整された敵モデルと、これらのプロンプトを反復的に識別するように最適化された判断モデルを採用しています。
本研究は, 初歩的なモデルテキストタダを用いて, わずか数ラウンドでGPT-4よりも13%高い精度を達成できることを示す。
論文 参考訳(メタデータ) (2023-08-26T05:20:58Z) - Tokenization Consistency Matters for Generative Models on Extractive NLP
Tasks [54.306234256074255]
生成モデルの訓練において一般的に無視されるトークン化の不整合の問題を特定する。
この問題は、入力と出力が無矛盾にトークン化されると、これらのタスクの抽出特性を損なう。
一貫性のあるトークン化では、ドメイン内のデータセットとドメイン外のデータセットの両方で、モデルのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2022-12-19T23:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。