論文の概要: SEVD: Synthetic Event-based Vision Dataset for Ego and Fixed Traffic Perception
- arxiv url: http://arxiv.org/abs/2404.10540v2
- Date: Fri, 19 Apr 2024 20:15:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 18:36:58.260214
- Title: SEVD: Synthetic Event-based Vision Dataset for Ego and Fixed Traffic Perception
- Title(参考訳): SEVD:Egoと固定されたトラフィック知覚のための合成イベントベース視覚データセット
- Authors: Manideep Reddy Aliminati, Bharatesh Chakravarthi, Aayush Atul Verma, Arpitsinh Vaghela, Hua Wei, Xuesong Zhou, Yezhou Yang,
- Abstract要約: 我々は、SEVD、第一種マルチビューエゴ、固定認識合成イベントベースデータセットを提案する。
SEVDは、都市、郊外、田園部、ハイウェイのシーンに、様々な種類の物体がある。
本研究では,最新のイベントベース (RED, RVT) とフレームベース (YOLOv8) を用いて,トラフィック検出タスクのデータセットを評価する。
- 参考スコア(独自算出の注目度): 22.114089372056238
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, event-based vision sensors have gained attention for autonomous driving applications, as conventional RGB cameras face limitations in handling challenging dynamic conditions. However, the availability of real-world and synthetic event-based vision datasets remains limited. In response to this gap, we present SEVD, a first-of-its-kind multi-view ego, and fixed perception synthetic event-based dataset using multiple dynamic vision sensors within the CARLA simulator. Data sequences are recorded across diverse lighting (noon, nighttime, twilight) and weather conditions (clear, cloudy, wet, rainy, foggy) with domain shifts (discrete and continuous). SEVD spans urban, suburban, rural, and highway scenes featuring various classes of objects (car, truck, van, bicycle, motorcycle, and pedestrian). Alongside event data, SEVD includes RGB imagery, depth maps, optical flow, semantic, and instance segmentation, facilitating a comprehensive understanding of the scene. Furthermore, we evaluate the dataset using state-of-the-art event-based (RED, RVT) and frame-based (YOLOv8) methods for traffic participant detection tasks and provide baseline benchmarks for assessment. Additionally, we conduct experiments to assess the synthetic event-based dataset's generalization capabilities. The dataset is available at https://eventbasedvision.github.io/SEVD
- Abstract(参考訳): 近年、従来のRGBカメラは、動的に困難な状況に対処する際の限界に直面しているため、イベントベースの視覚センサが自律運転アプリケーションに注目されている。
しかし、実世界と合成イベントベースのビジョンデータセットが利用可能であることは、依然として限られている。
このギャップに対応するために、我々は、CARLAシミュレータ内の複数の動的視覚センサを用いて、第1世代のマルチビューエゴであるSEVDと、固定認識合成イベントベースデータセットを提示する。
データシーケンスは、さまざまな照明(正午、夜間、ツイライト)と天候(澄んだ、曇り、雨、霧)とドメインシフト(離散的、連続的)にまたがって記録される。
SEVDは、都市、郊外、田舎、高速道路など様々な種類の物体(車、トラック、バン、自転車、オートバイ、歩行者)を含むシーンにまたがっている。
イベントデータに加えて、SEVDにはRGB画像、深度マップ、光学フロー、セマンティック、インスタンスセグメンテーションが含まれており、シーンの包括的な理解を容易にする。
さらに,交通検知タスクに最先端のイベントベース(RED,RVT)とフレームベース(YOLOv8)を用いてデータセットを評価し,評価のためのベースラインベンチマークを提供する。
さらに、合成イベントベースのデータセットの一般化能力を評価する実験を行う。
データセットはhttps://eventbasedvision.github.io/SEVDで公開されている。
関連論文リスト
- WayveScenes101: A Dataset and Benchmark for Novel View Synthesis in Autonomous Driving [4.911903454560829]
WayveScenes101は、新しいビュー合成において、コミュニティが技術の状態を前進させるのを助けるために設計されたデータセットである。
データセットは、幅広い環境条件と運転シナリオにわたる101の運転シーンで構成されている。
論文 参考訳(メタデータ) (2024-07-11T08:29:45Z) - eTraM: Event-based Traffic Monitoring Dataset [23.978331129798356]
我々は、イベントベースのトラフィック監視データセットであるeTraMを紹介した。
eTraMは、様々な照明と気象条件の異なる交通シナリオから10時間のデータを提供する。
車両から歩行者、マイクロモビリティまで、交通参加者の8つの異なるクラスをカバーしている。
論文 参考訳(メタデータ) (2024-03-29T04:58:56Z) - Implicit Event-RGBD Neural SLAM [54.74363487009845]
神経性SLAMは近年顕著な進歩を遂げている。
既存の手法は、非理想的なシナリオにおいて重大な課題に直面します。
本稿では,最初のイベントRGBD暗黙的ニューラルSLAMフレームワークであるEN-SLAMを提案する。
論文 参考訳(メタデータ) (2023-11-18T08:48:58Z) - SpikeMOT: Event-based Multi-Object Tracking with Sparse Motion Features [52.213656737672935]
SpikeMOTはイベントベースのマルチオブジェクトトラッカーである。
SpikeMOTはスパイクニューラルネットワークを使用して、オブジェクトに関連するイベントストリームからスパーステンポラルな特徴を抽出する。
論文 参考訳(メタデータ) (2023-09-29T05:13:43Z) - InfraParis: A multi-modal and multi-task autonomous driving dataset [4.6740600790529365]
我々は、RGB、深さ、赤外線という3つのモードで複数のタスクをサポートするInfraParisという新しいデータセットを紹介した。
本研究では,意味的セグメンテーション,オブジェクト検出,深さ推定といったタスクのモデルを含む,最先端のベースライン技術の評価を行う。
論文 参考訳(メタデータ) (2023-09-27T16:07:43Z) - On the Generation of a Synthetic Event-Based Vision Dataset for
Navigation and Landing [69.34740063574921]
本稿では,最適な着陸軌道からイベントベースの視覚データセットを生成する手法を提案する。
我々は,惑星と小惑星の自然シーン生成ユーティリティを用いて,月面のフォトリアリスティックな画像のシーケンスを構築した。
パイプラインは500トラジェクトリのデータセットを構築することで,表面特徴の現実的なイベントベース表現を生成することができることを示す。
論文 参考訳(メタデータ) (2023-08-01T09:14:20Z) - Event-Free Moving Object Segmentation from Moving Ego Vehicle [90.66285408745453]
動的シーンにおけるオブジェクトセグメンテーション(MOS)の移動は、自律運転において困難である。
ほとんどの最先端の手法は、光学フローマップから得られるモーションキューを利用する。
我々は,光学的フローに頼らずにリッチなモーションキューを提供する,より優れた映像理解のためのイベントカメラを活用することを提案する。
論文 参考訳(メタデータ) (2023-04-28T23:43:10Z) - Traffic Scene Parsing through the TSP6K Dataset [109.69836680564616]
高品質なピクセルレベルのアノテーションとインスタンスレベルのアノテーションを備えた,TSP6Kと呼ばれる特殊なトラフィック監視データセットを導入する。
データセットは、既存の運転シーンの何倍ものトラフィック参加者を持つ、より混雑した交通シーンをキャプチャする。
交通シーンの異なるセマンティック領域の詳細を復元するシーン解析のためのディテールリフィニングデコーダを提案する。
論文 参考訳(メタデータ) (2023-03-06T02:05:14Z) - Street-View Image Generation from a Bird's-Eye View Layout [95.36869800896335]
近年,Bird's-Eye View (BEV) の知覚が注目されている。
自動運転のためのデータ駆動シミュレーションは、最近の研究の焦点となっている。
本稿では,現実的かつ空間的に一貫した周辺画像を合成する条件生成モデルであるBEVGenを提案する。
論文 参考訳(メタデータ) (2023-01-11T18:39:34Z) - IBISCape: A Simulated Benchmark for multi-modal SLAM Systems Evaluation
in Large-scale Dynamic Environments [0.0]
IBISCapeは高忠実度SLAMシステムのシミュレーションベンチマークである。
自動運転車のナビゲーションに適した34のマルチモーダルデータセットを提供します。
シミュレーションされた大規模動的環境において, 各種配列上でのORB-SLAM3システムの評価を行った。
論文 参考訳(メタデータ) (2022-06-27T17:04:06Z) - A Differentiable Recurrent Surface for Asynchronous Event-Based Data [19.605628378366667]
本研究では,Long Short-Term Memory (LSTM) セルのグリッドであるMatrix-LSTMを提案する。
既存の再構成手法と比較して,学習した事象表面は柔軟性と光フロー推定に優れていた。
N-Carsデータセット上でのイベントベースのオブジェクト分類の最先端性を改善する。
論文 参考訳(メタデータ) (2020-01-10T14:09:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。