論文の概要: WayveScenes101: A Dataset and Benchmark for Novel View Synthesis in Autonomous Driving
- arxiv url: http://arxiv.org/abs/2407.08280v1
- Date: Thu, 11 Jul 2024 08:29:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 18:19:14.382976
- Title: WayveScenes101: A Dataset and Benchmark for Novel View Synthesis in Autonomous Driving
- Title(参考訳): WayveScenes101: 自動運転における新しいビュー合成のためのデータセットとベンチマーク
- Authors: Jannik Zürn, Paul Gladkov, Sofía Dudas, Fergal Cotter, Sofi Toteva, Jamie Shotton, Vasiliki Simaiaki, Nikhil Mohan,
- Abstract要約: WayveScenes101は、新しいビュー合成において、コミュニティが技術の状態を前進させるのを助けるために設計されたデータセットである。
データセットは、幅広い環境条件と運転シナリオにわたる101の運転シーンで構成されている。
- 参考スコア(独自算出の注目度): 4.911903454560829
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present WayveScenes101, a dataset designed to help the community advance the state of the art in novel view synthesis that focuses on challenging driving scenes containing many dynamic and deformable elements with changing geometry and texture. The dataset comprises 101 driving scenes across a wide range of environmental conditions and driving scenarios. The dataset is designed for benchmarking reconstructions on in-the-wild driving scenes, with many inherent challenges for scene reconstruction methods including image glare, rapid exposure changes, and highly dynamic scenes with significant occlusion. Along with the raw images, we include COLMAP-derived camera poses in standard data formats. We propose an evaluation protocol for evaluating models on held-out camera views that are off-axis from the training views, specifically testing the generalisation capabilities of methods. Finally, we provide detailed metadata for all scenes, including weather, time of day, and traffic conditions, to allow for a detailed model performance breakdown across scene characteristics. Dataset and code are available at https://github.com/wayveai/wayve_scenes.
- Abstract(参考訳): WayveScenes101は、幾何学やテクスチャを変えることで、多くの動的で変形可能な要素を含む挑戦的な運転シーンに焦点を当てた、新しいビュー合成の最先端化を支援するためのデータセットである。
データセットは、幅広い環境条件と運転シナリオにわたる101の運転シーンで構成されている。
このデータセットは、Wildの運転シーンの再構築をベンチマークするために設計されており、画像グラア、露光の速さ、非常にダイナミックなシーンなど、シーンの再構築方法に固有の多くの課題がある。
生画像とともに、標準データ形式でCOLMAP由来のカメラポーズを含める。
本稿では,トレーニングビューからオフ軸のホールドアウトカメラビューのモデルを評価するための評価プロトコルを提案する。
最後に,天気,日時,交通条件などすべての場面について詳細なメタデータを提供し,シーン特性の詳細なモデル性能の分解を可能にする。
データセットとコードはhttps://github.com/wayveai/wayve_scenes.comで入手できる。
関連論文リスト
- XLD: A Cross-Lane Dataset for Benchmarking Novel Driving View Synthesis [84.23233209017192]
本稿では,自律走行シミュレーションに特化して設計された新しい駆動ビュー合成データセットとベンチマークを提案する。
データセットには、トレーニング軌跡から1-4mずれて取得した画像のテストが含まれているため、ユニークなものだ。
我々は、フロントオンリーおよびマルチカメラ設定下で、既存のNVSアプローチを評価するための最初の現実的なベンチマークを確立する。
論文 参考訳(メタデータ) (2024-06-26T14:00:21Z) - SEVD: Synthetic Event-based Vision Dataset for Ego and Fixed Traffic Perception [22.114089372056238]
我々は、SEVD、第一種マルチビューエゴ、固定認識合成イベントベースデータセットを提案する。
SEVDは、都市、郊外、田園部、ハイウェイのシーンに、様々な種類の物体がある。
本研究では,最新のイベントベース (RED, RVT) とフレームベース (YOLOv8) を用いて,トラフィック検出タスクのデータセットを評価する。
論文 参考訳(メタデータ) (2024-04-12T20:40:12Z) - RSUD20K: A Dataset for Road Scene Understanding In Autonomous Driving [6.372000468173298]
RSUD20Kは、バングラデシュの道路の運転から見た20K以上の高解像度画像からなる、道路シーン理解のための新しいデータセットである。
我々の作業は以前の取り組みを大幅に改善し、詳細なアノテーションを提供し、オブジェクトの複雑さを増大させます。
論文 参考訳(メタデータ) (2024-01-14T16:10:42Z) - Street Gaussians: Modeling Dynamic Urban Scenes with Gaussian Splatting [32.59889755381453]
近年の手法では、走行中の車両のポーズをアニメーションに取り入れてNeRFを拡張し、ダイナミックな街路シーンのリアルな視認を可能にしている。
この制限に対処する新たな明示的なシーン表現であるStreet Gaussiansを紹介します。
提案手法は,全データセットで常に最先端の手法より優れる。
論文 参考訳(メタデータ) (2024-01-02T18:59:55Z) - On the Generation of a Synthetic Event-Based Vision Dataset for
Navigation and Landing [69.34740063574921]
本稿では,最適な着陸軌道からイベントベースの視覚データセットを生成する手法を提案する。
我々は,惑星と小惑星の自然シーン生成ユーティリティを用いて,月面のフォトリアリスティックな画像のシーケンスを構築した。
パイプラインは500トラジェクトリのデータセットを構築することで,表面特徴の現実的なイベントベース表現を生成することができることを示す。
論文 参考訳(メタデータ) (2023-08-01T09:14:20Z) - CommonScenes: Generating Commonsense 3D Indoor Scenes with Scene Graph
Diffusion [83.30168660888913]
シーングラフを対応する制御可能な3Dシーンに変換する完全生成モデルであるCommonScenesを提案する。
パイプラインは2つのブランチで構成されており、1つは変分オートエンコーダでシーン全体のレイアウトを予測し、もう1つは互換性のある形状を生成する。
生成されたシーンは、入力シーングラフを編集し、拡散モデルのノイズをサンプリングすることで操作することができる。
論文 参考訳(メタデータ) (2023-05-25T17:39:13Z) - Traffic Scene Parsing through the TSP6K Dataset [109.69836680564616]
高品質なピクセルレベルのアノテーションとインスタンスレベルのアノテーションを備えた,TSP6Kと呼ばれる特殊なトラフィック監視データセットを導入する。
データセットは、既存の運転シーンの何倍ものトラフィック参加者を持つ、より混雑した交通シーンをキャプチャする。
交通シーンの異なるセマンティック領域の詳細を復元するシーン解析のためのディテールリフィニングデコーダを提案する。
論文 参考訳(メタデータ) (2023-03-06T02:05:14Z) - Street-View Image Generation from a Bird's-Eye View Layout [95.36869800896335]
近年,Bird's-Eye View (BEV) の知覚が注目されている。
自動運転のためのデータ駆動シミュレーションは、最近の研究の焦点となっている。
本稿では,現実的かつ空間的に一貫した周辺画像を合成する条件生成モデルであるBEVGenを提案する。
論文 参考訳(メタデータ) (2023-01-11T18:39:34Z) - CrowdDriven: A New Challenging Dataset for Outdoor Visual Localization [44.97567243883994]
クラウドソースデータを用いた屋外シーンにおける視覚的位置推定のための新しいベンチマークを提案する。
私たちのデータセットは非常に困難で、評価されたすべてのメソッドが最も難しい部分で失敗していることが示されています。
データセットリリースの一部として、私たちはそれを生成するために使用されるツールを提供し、効率的で効果的な2D対応アノテーションを可能にします。
論文 参考訳(メタデータ) (2021-09-09T19:25:48Z) - SceneGen: Learning to Generate Realistic Traffic Scenes [92.98412203941912]
私たちは、ルールと分布の必要性を緩和するトラフィックシーンのニューラルオートレグレッシブモデルであるSceneGenを紹介します。
実トラフィックシーンの分布を忠実にモデル化するSceneGenの能力を実証する。
論文 参考訳(メタデータ) (2021-01-16T22:51:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。