Warm-Start Variational Quantum Policy Iteration
- URL: http://arxiv.org/abs/2404.10546v2
- Date: Wed, 17 Jul 2024 15:38:33 GMT
- Title: Warm-Start Variational Quantum Policy Iteration
- Authors: Nico Meyer, Jakob Murauer, Alexander Popov, Christian Ufrecht, Axel Plinge, Christopher Mutschler, Daniel D. Scherer,
- Abstract summary: Reinforcement learning is a powerful framework aiming to determine optimal behavior in highly complex decision-making scenarios.
We propose the variational quantum policy iteration (VarQPI) algorithm, realizing this step with a NISQ-compatible quantum-enhanced subroutine.
Its scalability is supported by an analysis of the structure of generic reinforcement learning environments.
- Score: 39.04157716488156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning is a powerful framework aiming to determine optimal behavior in highly complex decision-making scenarios. This objective can be achieved using policy iteration, which requires to solve a typically large linear system of equations. We propose the variational quantum policy iteration (VarQPI) algorithm, realizing this step with a NISQ-compatible quantum-enhanced subroutine. Its scalability is supported by an analysis of the structure of generic reinforcement learning environments, laying the foundation for potential quantum advantage with utility-scale quantum computers. Furthermore, we introduce the warm-start initialization variant (WS-VarQPI) that significantly reduces resource overhead. The algorithm solves a large FrozenLake environment with an underlying 256x256-dimensional linear system, indicating its practical robustness.
Related papers
- Differentiable Quantum Computing for Large-scale Linear Control [26.118874431217165]
We introduce an end-to-end quantum algorithm for linear-quadratic control with provable speedups.
Our algorithm, based on a policy gradient method, incorporates a novel quantum subroutine for solving the matrix Lyapunov equation.
arXiv Detail & Related papers (2024-11-03T00:54:33Z) - Demonstration of Scalability and Accuracy of Variational Quantum Linear Solver for Computational Fluid Dynamics [0.0]
This paper presents an exploration of quantum methodologies aimed at achieving high accuracy in solving such a large system of equations.
We consider the 2D, transient, incompressible, viscous, non-linear coupled Burgers equation as a test problem.
Our findings demonstrate that our quantum methods yield results comparable in accuracy to traditional approaches.
arXiv Detail & Related papers (2024-09-05T04:42:24Z) - Hybrid quantum-classical and quantum-inspired classical algorithms for
solving banded circulant linear systems [0.8192907805418583]
We present an efficient algorithm based on convex optimization of combinations of quantum states to solve for banded circulant linear systems.
By decomposing banded circulant matrices into cyclic permutations, our approach produces approximate solutions to such systems with a combination of quantum states linear to $K$.
We validate our methods with classical simulations and actual IBM quantum computer implementation, showcasing their applicability for solving physical problems such as heat transfer.
arXiv Detail & Related papers (2023-09-20T16:27:16Z) - Challenges of variational quantum optimization with measurement shot noise [0.0]
We study the scaling of the quantum resources to reach a fixed success probability as the problem size increases.
Our results suggest that hybrid quantum-classical algorithms should possibly avoid a brute force classical outer loop.
arXiv Detail & Related papers (2023-07-31T18:01:15Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
We provide a complete quantum circuit-level description of the algorithm from problem input to problem output.
We report the number of logical qubits and the quantity/depth of non-Clifford T-gates needed to run the algorithm.
arXiv Detail & Related papers (2022-11-22T18:54:48Z) - Quantum walk in a reinforced free-energy landscape: Quantum annealing
with reinforcement [0.0]
Reinforcement is one of the strategies that can be used to circumvent the exponentially small energy gaps of the system.
In this study, we take a local entropy in the configuration space for the reinforcement and apply the algorithm to a number of easy and hard optimization problems.
arXiv Detail & Related papers (2022-02-22T14:16:27Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
We show how (discrete-time) Lyapunov stability theory can serve as a powerful tool to aid, or even lead, in the analysis (and potential design) of optimization algorithms that are not necessarily gradient-based.
The particular ML problem that this paper focuses on is that of parameter estimation in an incomplete-data Bayesian framework via the popular optimization algorithm known as maximum a posteriori expectation-maximization (MAP-EM)
We show that fast convergence (linear or quadratic) is achieved, which could have been difficult to unveil without our adopted S&C approach.
arXiv Detail & Related papers (2020-06-23T01:34:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.