論文の概要: HiGraphDTI: Hierarchical Graph Representation Learning for Drug-Target Interaction Prediction
- arxiv url: http://arxiv.org/abs/2404.10561v1
- Date: Tue, 16 Apr 2024 13:35:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 16:44:15.374498
- Title: HiGraphDTI: Hierarchical Graph Representation Learning for Drug-Target Interaction Prediction
- Title(参考訳): HiGraphDTI:ドラッグ・ターゲット相互作用予測のための階層的グラフ表現学習
- Authors: Bin Liu, Siqi Wu, Jin Wang, Xin Deng, Ao Zhou,
- Abstract要約: 階層型グラフ表現学習に基づくDTI予測法(HiGraphDTI)を提案する。
具体的には、HiGraphDTIは三重レベル分子グラフから階層的な薬物表現を学び、原子、モチーフ、分子に埋め込まれた化学情報を徹底的に活用する。
注目特徴融合モジュールは、異なる受容領域からの情報を組み込んで表現対象特徴を抽出する。
- 参考スコア(独自算出の注目度): 15.005837084219355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The discovery of drug-target interactions (DTIs) plays a crucial role in pharmaceutical development. The deep learning model achieves more accurate results in DTI prediction due to its ability to extract robust and expressive features from drug and target chemical structures. However, existing deep learning methods typically generate drug features via aggregating molecular atom representations, ignoring the chemical properties carried by motifs, i.e., substructures of the molecular graph. The atom-drug double-level molecular representation learning can not fully exploit structure information and fails to interpret the DTI mechanism from the motif perspective. In addition, sequential model-based target feature extraction either fuses limited contextual information or requires expensive computational resources. To tackle the above issues, we propose a hierarchical graph representation learning-based DTI prediction method (HiGraphDTI). Specifically, HiGraphDTI learns hierarchical drug representations from triple-level molecular graphs to thoroughly exploit chemical information embedded in atoms, motifs, and molecules. Then, an attentional feature fusion module incorporates information from different receptive fields to extract expressive target features.Last, the hierarchical attention mechanism identifies crucial molecular segments, which offers complementary views for interpreting interaction mechanisms. The experiment results not only demonstrate the superiority of HiGraphDTI to the state-of-the-art methods, but also confirm the practical ability of our model in interaction interpretation and new DTI discovery.
- Abstract(参考訳): 薬物標的相互作用(DTI)の発見は医薬品開発において重要な役割を担っている。
深層学習モデルは、薬物や標的化学構造から堅牢で表現力のある特徴を抽出する能力により、DTI予測においてより正確な結果が得られる。
しかし、既存の深層学習法は一般に分子原子の表現を集約し、分子グラフのサブ構造であるモチーフによって運ばれる化学的性質を無視して、薬物の特徴を生成する。
原子ドラッグ二重レベル分子表現学習は構造情報を完全に活用することができず、モチーフの観点からDTI機構を解釈できない。
さらに、逐次モデルに基づくターゲット特徴抽出は、限られた文脈情報を融合するか、高価な計算資源を必要とする。
上記の問題に対処するため,階層型グラフ表現学習に基づくDTI予測法(HiGraphDTI)を提案する。
具体的には、HiGraphDTIは三重レベル分子グラフから階層的な薬物表現を学び、原子、モチーフ、分子に埋め込まれた化学情報を徹底的に活用する。
次に、注目特徴融合モジュールは、異なる受容領域からの情報を組み込んで表現対象の特徴を抽出し、階層的注意機構は重要な分子セグメントを識別し、相互作用機構の解釈に補完的なビューを提供する。
実験の結果は,HiGraphDTIの最先端手法に対する優位性を実証するだけでなく,インタラクションの解釈や新しいDTI発見における我々のモデルの有効性を実証するものである。
関連論文リスト
- Contrastive Dual-Interaction Graph Neural Network for Molecular Property Prediction [0.0]
本稿では,分子特性予測のための自己教師付きグラフニューラルネットワークフレームワークであるDIG-Molを紹介する。
DIG-Molは2つの相互接続ネットワークと運動量蒸留ネットワークを統合し、分子特性を効率的に改善する。
我々は,様々な分子特性予測タスクにおける広範囲な実験的評価により,DIG-Molの最先端性能を確立した。
論文 参考訳(メタデータ) (2024-05-04T10:09:27Z) - MolGrapher: Graph-based Visual Recognition of Chemical Structures [50.13749978547401]
化学構造を視覚的に認識するためにMolGrapherを導入する。
すべての候補原子と結合をノードとして扱い、それらをグラフ化する。
グラフニューラルネットワークを用いてグラフ内の原子と結合ノードを分類する。
論文 参考訳(メタデータ) (2023-08-23T16:16:11Z) - GraphCL-DTA: a graph contrastive learning with molecular semantics for
drug-target binding affinity prediction [2.523552067304274]
GraphCL-DTAは、薬物表現を学習する分子グラフのためのグラフコントラスト学習フレームワークである。
次に、薬物と標的表現の均一性を調整するために直接使用できる新しい損失関数を設計する。
上記のイノベーティブな要素の有効性は、2つの実際のデータセットで検証される。
論文 参考訳(メタデータ) (2023-07-18T06:01:37Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
本稿では,分子の2レベル構造を考慮した新しいGODE法を提案する。
異なるグラフ構造上で2つのグラフニューラルネットワーク(GNN)を事前訓練し、対照的な学習と組み合わせることで、GODEは分子構造を対応する知識グラフサブ構造と融合させる。
11の化学特性タスクを微調整した場合、我々のモデルは既存のベンチマークよりも優れており、分類タスクの平均ROC-AUCアップリフトは13.8%、回帰タスクの平均RMSE/MAEエンハンスメントは35.1%である。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - HiGNN: Hierarchical Informative Graph Neural Networks for Molecular
Property Prediction Equipped with Feature-Wise Attention [5.735627221409312]
分子特性を予測するための階層型情報グラフニューラルネットワークフレームワーク(HiGNN)を提案する。
実験により、HiGNNは、多くの挑戦的な薬物発見関連ベンチマークデータセットに対して最先端の予測性能を達成することが示された。
論文 参考訳(メタデータ) (2022-08-30T05:16:15Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Hierarchical Graph Representation Learning for the Prediction of
Drug-Target Binding Affinity [7.023929372010717]
本稿では,薬物結合親和性予測,すなわちHGRL-DTAのための新しい階層グラフ表現学習モデルを提案する。
本稿では,グローバルレベルの親和性グラフと局所レベルの分子グラフから得られた階層的表現を統合するためのメッセージブロードキャスティング機構を採用し,また,類似性に基づく埋め込みマップを設計し,未知の薬物や標的に対する表現の推論というコールドスタート問題を解決する。
論文 参考訳(メタデータ) (2022-03-22T04:50:16Z) - Drug-Target Interaction Prediction with Graph Attention networks [26.40249934284416]
DTI予測のためのエンドツーエンドフレームワークであるDTI-GAT(Drug-Target Interaction Prediction with Graph Attention Network)を提案する。
DTI-GATは、注目機構を備えたグラフ構造化データで動作するディープネットワークニューラルアーキテクチャを組み込んでいる。
実験により、DTI-GATはバイナリDTI予測問題において、様々な最先端システムより優れていることが示された。
論文 参考訳(メタデータ) (2021-07-10T07:06:36Z) - MolTrans: Molecular Interaction Transformer for Drug Target Interaction
Prediction [68.5766865583049]
薬物標的相互作用(DTI)予測は、シリコ薬物発見の基本的な課題である。
近年、DTI予測におけるディープラーニングの進歩が期待されている。
これらの制約に対処する分子間相互作用変換器(TransMol)を提案する。
論文 参考訳(メタデータ) (2020-04-23T18:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。