論文の概要: AAVDiff: Experimental Validation of Enhanced Viability and Diversity in Recombinant Adeno-Associated Virus (AAV) Capsids through Diffusion Generation
- arxiv url: http://arxiv.org/abs/2404.10573v1
- Date: Tue, 16 Apr 2024 13:51:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 16:44:15.363222
- Title: AAVDiff: Experimental Validation of Enhanced Viability and Diversity in Recombinant Adeno-Associated Virus (AAV) Capsids through Diffusion Generation
- Title(参考訳): AAVDiff:拡散発生による組換えアデノ関連ウイルス(AAV)カプシドの生存性と多様性の実験的検証
- Authors: Lijun Liu, Jiali Yang, Jianfei Song, Xinglin Yang, Lele Niu, Zeqi Cai, Hui Shi, Tingjun Hou, Chang-yu Hsieh, Weiran Shen, Yafeng Deng,
- Abstract要約: そこで本研究では,キャプシド列を生成するエンドツーエンド拡散モデルを提案する。
38,000種類のAAV2ウイルスタンパク質 (VP) 配列を生成し, 8000のウイルス選択性について検討した。
AAV9キャプシドデータがない場合には、1つの野生型配列を除いて、我々は同じモデルを用いて最大9つの変異を持つ複数の生存可能な配列を直接生成した。
- 参考スコア(独自算出の注目度): 7.8254313735368255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recombinant adeno-associated virus (rAAV) vectors have revolutionized gene therapy, but their broad tropism and suboptimal transduction efficiency limit their clinical applications. To overcome these limitations, researchers have focused on designing and screening capsid libraries to identify improved vectors. However, the large sequence space and limited resources present challenges in identifying viable capsid variants. In this study, we propose an end-to-end diffusion model to generate capsid sequences with enhanced viability. Using publicly available AAV2 data, we generated 38,000 diverse AAV2 viral protein (VP) sequences, and evaluated 8,000 for viral selection. The results attested the superiority of our model compared to traditional methods. Additionally, in the absence of AAV9 capsid data, apart from one wild-type sequence, we used the same model to directly generate a number of viable sequences with up to 9 mutations. we transferred the remaining 30,000 samples to the AAV9 domain. Furthermore, we conducted mutagenesis on AAV9 VP hypervariable regions VI and V, contributing to the continuous improvement of the AAV9 VP sequence. This research represents a significant advancement in the design and functional validation of rAAV vectors, offering innovative solutions to enhance specificity and transduction efficiency in gene therapy applications.
- Abstract(参考訳): 組換えアデノ関連ウイルス(rAAV)ベクターは遺伝子治療に革命をもたらしたが、その広範なトロピズムと準最適導入効率は臨床応用を制限している。
これらの制限を克服するために、研究者は改良ベクターを特定するためにキャプシドライブラリの設計とスクリーニングに重点を置いてきた。
しかし、大きなシーケンス空間と限られた資源は、実行可能なキャプシド変種を特定する上での課題である。
そこで本研究では,キャプシド列を生成するエンドツーエンド拡散モデルを提案する。
市販のAV2データを用いて,38,000種類のAV2ウイルスタンパク質(VP)配列を生成し,8000個のウイルス選択試験を行った。
その結果,従来の手法と比較して,モデルの優位性が確認された。
さらに, AAV9キャプシドデータがない場合には, 1つの野生型配列とは別に, 最大9個の変異を持つ生存可能な配列を直接生成するために, 同じモデルを用いた。
残りの3万のサンプルをAAV9ドメインに転送しました
さらに, AAV9 VP hypervariable region VI と V の変異解析を行い, AAV9 VP 配列の連続的改良に寄与した。
本研究は, rAAVベクターの設計と機能検証において重要な進歩を示し, 遺伝子治療応用における特異性と伝達効率を高める革新的なソリューションを提供する。
関連論文リスト
- Improved Anomaly Detection through Conditional Latent Space VAE Ensembles [49.1574468325115]
条件付きラテント空間変分オートエンコーダ(CL-VAE)は、既知の不整形クラスと未知の不整形クラスを持つデータに対する異常検出のための前処理を改善した。
モデルでは異常検出の精度が向上し、MNISTデータセットで97.4%のAUCが達成された。
さらに、CL-VAEは、アンサンブルの利点、より解釈可能な潜在空間、モデルサイズに制限のある複雑なデータでパターンを学習する能力の増大を示す。
論文 参考訳(メタデータ) (2024-10-16T07:48:53Z) - Dense Feature Memory Augmented Transformers for COVID-19 Vaccination
Search Classification [60.49594822215981]
本稿では,新型コロナウイルスワクチン関連検索クエリの分類モデルを提案する。
本稿では,モデルが対応可能なメモリトークンとして,高密度特徴を考慮した新しい手法を提案する。
この新しいモデリング手法により,Vaccine Search Insights (VSI) タスクを大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-12-16T13:57:41Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
我々は、IlluminaやPacBioといった一般的なシークエンシングプラットフォームのエラープロファイルを模倣するために、SARS-CoV-2ゲノム配列を摂動する方法をいくつか紹介する。
シミュレーションに基づくいくつかのアプローチは、入力シーケンスに対する特定の敵攻撃に対する特定の埋め込み手法に対して、他の手法よりも堅牢(かつ正確)であることを示す。
論文 参考訳(メタデータ) (2022-07-18T19:16:56Z) - COVID-Net US-X: Enhanced Deep Neural Network for Detection of COVID-19
Patient Cases from Convex Ultrasound Imaging Through Extended Linear-Convex
Ultrasound Augmentation Learning [75.74756992992147]
世界人口は新型コロナウイルス(COVID-19)のパンデミックの影響で大きな影響を受け続けている。
医療用ポイント・オブ・ケア・超音波(POCUS)画像は、低コストで有効な画像モダリティとして利用されてきている。
POCUSを使用した新型コロナウイルススクリーニングのためのディープニューラルネットワークを構築する上での大きな課題は、使用するプローブの種類だ。
論文 参考訳(メタデータ) (2022-04-29T02:13:39Z) - Using Deep Learning Sequence Models to Identify SARS-CoV-2 Divergence [1.9573380763700707]
SARS-CoV-2は上層呼吸器系RNAウイルスで、2021年5月時点で300万人以上が死亡し、全世界で1億5000万人以上が感染している。
本稿では、繰り返しおよび畳み込み単位を利用してスパイクタンパク質のアミノ酸配列を取り込み、対応するクレードを分類するニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2021-11-12T07:52:11Z) - PhyloTransformer: A Discriminative Model for Mutation Prediction Based
on a Multi-head Self-attention Mechanism [10.468453827172477]
重症急性呼吸器症候群ウイルス2(SARS-CoV-2)は10/19/21で219万人が感染し、死亡率は3.6%となっている。
そこで我々は,トランスフォーマーを用いた識別モデルであるPhylo Transformerを開発した。
論文 参考訳(メタデータ) (2021-11-03T01:30:57Z) - Robust Representation and Efficient Feature Selection Allows for
Effective Clustering of SARS-CoV-2 Variants [0.0]
SARS-CoV-2ウイルスは異なる変種を含み、それぞれ異なる変異を持つ。
SARS-CoV-2ゲノムの変異の多くは、ゲノム配列のスパイク領域で不均等に起こる。
本研究では,異なる既知の変異体の挙動を研究するために,スパイクタンパク質配列をクラスタ化する手法を提案する。
論文 参考訳(メタデータ) (2021-10-18T21:18:52Z) - Effective and scalable clustering of SARS-CoV-2 sequences [0.41998444721319206]
SARS-CoV-2は進化過程に従って変異し続けている。
GISAIDなどの公開データベースで現在利用可能なSARS-CoV-2のシーケンス数は数百万である。
本稿では,現在のSARS-CoV-2変種をクラスタリングシーケンスに基づいて同定する手法を提案する。
論文 参考訳(メタデータ) (2021-08-18T13:32:43Z) - A k-mer Based Approach for SARS-CoV-2 Variant Identification [55.78588835407174]
アミノ酸の順序を保つことで,分類器の精度が向上することを示す。
また,アメリカ疾病予防管理センター(CDC)が報告した,変異の同定に重要な役割を担っているアミノ酸の重要性も示した。
論文 参考訳(メタデータ) (2021-08-07T15:08:15Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。