論文の概要: Propensity-driven Uncertainty Learning for Sample Exploration in Source-Free Active Domain Adaptation
- arxiv url: http://arxiv.org/abs/2501.13517v1
- Date: Thu, 23 Jan 2025 10:05:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:58:54.621170
- Title: Propensity-driven Uncertainty Learning for Sample Exploration in Source-Free Active Domain Adaptation
- Title(参考訳): ソースフリーなアクティブドメイン適応におけるサンプル探索のための不確かさ学習
- Authors: Zicheng Pan, Xiaohan Yu, Weichuan Zhang, Yongsheng Gao,
- Abstract要約: ソースフリーアクティブドメイン適応(SFADA)は、ソースデータにアクセスせずに、トレーニング済みのモデルを新しいドメインに適応するという課題に対処する。
このシナリオは、データプライバシ、ストレージ制限、ラベル付けコストが重要な懸念事項である現実世界のアプリケーションに特に関係している。
Propensity-driven Uncertainty Learning (ProULearn) フレームワークを提案する。
- 参考スコア(独自算出の注目度): 19.620523416385346
- License:
- Abstract: Source-free active domain adaptation (SFADA) addresses the challenge of adapting a pre-trained model to new domains without access to source data while minimizing the need for target domain annotations. This scenario is particularly relevant in real-world applications where data privacy, storage limitations, or labeling costs are significant concerns. Key challenges in SFADA include selecting the most informative samples from the target domain for labeling, effectively leveraging both labeled and unlabeled target data, and adapting the model without relying on source domain information. Additionally, existing methods often struggle with noisy or outlier samples and may require impractical progressive labeling during training. To effectively select more informative samples without frequently requesting human annotations, we propose the Propensity-driven Uncertainty Learning (ProULearn) framework. ProULearn utilizes a novel homogeneity propensity estimation mechanism combined with correlation index calculation to evaluate feature-level relationships. This approach enables the identification of representative and challenging samples while avoiding noisy outliers. Additionally, we develop a central correlation loss to refine pseudo-labels and create compact class distributions during adaptation. In this way, ProULearn effectively bridges the domain gap and maximizes adaptation performance. The principles of informative sample selection underlying ProULearn have broad implications beyond SFADA, offering benefits across various deep learning tasks where identifying key data points or features is crucial. Extensive experiments on four benchmark datasets demonstrate that ProULearn outperforms state-of-the-art methods in domain adaptation scenarios.
- Abstract(参考訳): ソースフリーなアクティブドメイン適応(SFADA)は、ターゲットドメインアノテーションの必要性を最小限に抑えながら、ソースデータにアクセスせずに、トレーニング済みのモデルを新しいドメインに適応するという課題に対処する。
このシナリオは、データプライバシ、ストレージ制限、ラベル付けコストが重要な懸念事項である現実世界のアプリケーションに特に関係している。
SFADAの主な課題は、ラベル付けのためにターゲットドメインから最も情報に富んだサンプルを選択すること、ラベル付けされたデータとラベル付けされていないデータの両方を効果的に活用すること、ソースドメイン情報に頼ることなくモデルを適応することである。
さらに、既存の手法はノイズや異常なサンプルに苦しむことが多く、訓練中に非現実的なプログレッシブなラベリングを必要とすることがある。
人間のアノテーションを頻繁に要求することなく,より情報に富むサンプルを効果的に選択するために,Propensity-driven Uncertainty Learning (ProULearn) フレームワークを提案する。
ProULearnは、相関指数計算と組み合わせた新しい均一性確率推定機構を用いて特徴レベルの関係を評価する。
このアプローチは、ノイズの多い外乱を避けながら、代表および挑戦的なサンプルの識別を可能にする。
さらに、擬似ラベルを洗練し、適応中にコンパクトなクラス分布を生成するために、中央相関損失を開発する。
このように、ProULearnはドメインギャップを効果的にブリッジし、適応性能を最大化する。
ProULearnを基盤とする情報的サンプル選択の原則は、SFADA以外にも幅広い意味を持ち、重要なデータポイントや特徴を特定するためのさまざまなディープラーニングタスクにメリットを提供する。
4つのベンチマークデータセットに対する大規模な実験により、ProULearnはドメイン適応シナリオにおける最先端のメソッドよりも優れていることが示された。
関連論文リスト
- Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
ドメイン適応(DA)は、ソースドメインから関連するターゲットドメインへの知識伝達を容易にする。
本稿では、ソースデータフリーなアクティブドメイン適応(SFADA)という実用的なDAパラダイムについて検討する。
本稿では,学習者学習(LFTL)というSFADAの新たなパラダイムを紹介し,学習した学習知識を事前学習モデルから活用し,余分なオーバーヘッドを伴わずにモデルを積極的に反復する。
論文 参考訳(メタデータ) (2024-07-26T17:51:58Z) - Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
本稿では、下流知識と事前学習指導のデータ相互作用をトレースするダウンストリーム・プレテキスト・ドメイン知識トレース(DOKT)手法を提案する。
DOKTは、トレースバックの多様性指標とドメインベースの不確実性推定器から構成される。
10のデータセットで行った実験は、我々のモデルが他の最先端の手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-20T01:34:13Z) - Uncertainty-guided Open-Set Source-Free Unsupervised Domain Adaptation with Target-private Class Segregation [22.474866164542302]
UDAアプローチはソースとターゲットドメインが同じラベル空間を共有していると一般的に仮定する。
本稿では、SF-OSDA(Source-Free Open-set Domain Adaptation)設定の課題について考察する。
本稿では,サンプルを複数の未知のクラスに分離することで,ターゲット・プライベートカテゴリの粒度を利用したSF-OSDAの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-16T13:52:00Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
クロスドメインキーポイント検出方法は、常に適応中にソースデータにアクセスする必要がある。
本稿では、ターゲット領域に十分に訓練されたソースモデルのみを提供する、ソースフリーなドメイン適応キーポイント検出について考察する。
論文 参考訳(メタデータ) (2023-02-09T12:06:08Z) - ALLSH: Active Learning Guided by Local Sensitivity and Hardness [98.61023158378407]
本稿では,局所感度と硬度認識獲得機能を備えたラベル付きサンプルの検索を提案する。
本手法は,様々な分類タスクにおいてよく用いられるアクティブラーニング戦略よりも一貫した利得が得られる。
論文 参考訳(メタデータ) (2022-05-10T15:39:11Z) - Feature Diversity Learning with Sample Dropout for Unsupervised Domain
Adaptive Person Re-identification [0.0]
本稿では,ノイズの多い擬似ラベルを限定することで,より優れた一般化能力を持つ特徴表現を学習する手法を提案する。
我々は,古典的な相互学習アーキテクチャの下で,FDL(Feature Diversity Learning)と呼ばれる新しい手法を提案する。
実験の結果,提案するFDL-SDは,複数のベンチマークデータセット上での最先端性能を実現することがわかった。
論文 参考訳(メタデータ) (2022-01-25T10:10:48Z) - A Curriculum-style Self-training Approach for Source-Free Semantic Segmentation [91.13472029666312]
ソースフリーなドメイン適応型セマンティックセマンティックセグメンテーションのためのカリキュラムスタイルの自己学習手法を提案する。
提案手法は, ソースフリーなセマンティックセグメンテーションタスクにおいて, 合成-実-実-実-実-実-実-非実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実
論文 参考訳(メタデータ) (2021-06-22T10:21:39Z) - Adaptive Pseudo-Label Refinement by Negative Ensemble Learning for
Source-Free Unsupervised Domain Adaptation [35.728603077621564]
既存のUnsupervised Domain Adaptation (UDA)メソッドは、トレーニング中にソースとターゲットのドメインデータを同時に利用できると仮定する。
訓練済みのソースモデルは、よく知られたドメインシフトの問題により、ターゲットに対して性能が悪くても、常に利用可能であると考えられている。
適応型ノイズフィルタリングと擬似ラベル改良に取り組むための統一手法を提案する。
論文 参考訳(メタデータ) (2021-03-29T22:18:34Z) - Source Data-absent Unsupervised Domain Adaptation through Hypothesis
Transfer and Labeling Transfer [137.36099660616975]
Unsupervised Adapt Adaptation (UDA) は、関連性のある異なるラベル付きソースドメインから新しいラベルなしターゲットドメインへの知識の転送を目標としている。
既存のudaメソッドの多くはソースデータへのアクセスを必要としており、プライバシ上の懸念からデータが機密で共有できない場合は適用できない。
本稿では、ソースデータにアクセスする代わりに、トレーニング済みの分類モデルのみを用いて現実的な設定に取り組むことを目的とする。
論文 参考訳(メタデータ) (2020-12-14T07:28:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。